
TECHNICAL REPORT

SECURITY LAB, SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

PODARCH: Protecting Legacy Applications
with a Purely Hardware TCB

Shweta SHINDE, Shruti TOPLE, Deepak KATHAYAT and Prateek SAXENA

NUS-SL-TR-15-01
February 6, 2015

1

PODARCH: Protecting Legacy Applications with a Purely Hardware TCB
Shweta Shinde, Shruti Tople, Deepak Kathayat, Prateek Saxena

School of Computing, National University of Singapore
{shweta24, shruti90, deepakka, prateeks}@comp.nus.edu.sg

Abstract—Secure execution of applications on untrusted op-
erating systems is a fundamental security primitive that has
been challenging to achieve. In this paper, we propose a new
architecture feature called PODARCH, which makes it easy to
import executables on an OS without risking the target system’s
security or the execution of the imported application. PODARCH
can be implemented as a backwards-compatible extension to
the Intel x86 ISA, and overall, offers strong compatibility with
existing applications and OSes beyond those offered by several
existing architectural primitives (e.g., Intel SGX). We present
a complete system implementation of a PODARCH CPU, the
associated toolchain and a modified Linux OS and find that the
adaption effort requires 415 lines of code change to the Linux
kernel. Thus, PODARCH offers a new design point in the space
of architectural primitives that commodity CPU designers can
consider in the emerging security extensions to their ISA.

I. INTRODUCTION

Current CPUs separate software stacks in distinct privilege
rings for security and isolation. For example, modern OSes use
architectural features to separate themselves from malicious
applications [5]. However, recently, this one-way isolation has
come into question, making the OS the Achilles heel. Sev-
eral traditional attacks such as buffer overflows and memory
corruption in the OS can subvert it after which the malware
gains unrestrained access to the sensitive application data in
the memory. Users often encounter a situation where they
need to perform security-sensitive computation on an untrusted
operating system or software stack. There are several examples
of such computation — for example, a SSL or SSH server
on vulnerable web servers, a face recognition computation
running on an untrusted cloud server, or even an encrypted
user-level file system client running on a borrowed untrusted
laptop device. In these applications, the sensitive user-level
application needs to be protected during execution from the
co-resident malware application or the OS. Executing such
applications with strong isolation guarantees, even in a hostile
or compromised legacy OS environment is an important secu-
rity problem, which motivates rethinking existing architectural
support for such a primitive.

To address this concern, we seek a security primitive that
allows an application to load, execute and terminate itself
on a potentially compromised OS. We call such a primitive
a secure application execution primitive. Several previous
works have proposed hypervisor-based mechanisms to securely
execute sensitive applications [20], [27], [47]. Instead, in this
paper, we propose PODARCH— a new architectural primitive
that excludes all other software code, but for the sensitive
application itself, from the trusted computing base (TCB). Our
design takes into consideration several desirable primitives like

scalability, portability, compatibility with legacy OS and care-
fully minimizes the assumptions, eliminating the hypervisor,
to achieve a design that can be implemented completely in
the CPU with zero software TCB. Though previous works
offer various architectural solution in this space [17], [20],
[21], in our work, we provide a complete end-to-end system
with modifications to the kernel, compiler tool chain and
ELF loader to securely execute an application in presence
of an untrusted OS. Our solution supports transformation of
any legacy applications to execute on PODARCH using our
modified tool chain with zero developer effort. PODARCH
retains compatibility with the commodity OS by supporting
copy-on-write, demand-paging, invoking kernel level system
calls, process memory management, context switches, interrupt
and exception handling.

Our solution offers a new point in this design space,
specifically: no trusted software TCB, good compatibility with
commodity Linux system and process semantics, no assump-
tions about requiring a secure boot or remote attestation and
zero developer effort in adapting several existing applications.
PODARCH retains the resource provisioning capacity with the
OS while delegating the security of the applications to the
trusted CPU. Thus, PODARCH keeps the semantics of the
virtual memory management, system call handling, exception
handling, scheduling and process management largely un-
changed, which makes it easy to adopt PODARCH in commod-
ity operating systems. Further, we provide a detailed security
analysis of our design by identifying several avenues of subtle
attacks which are protected by our design.

PODARCH introduces the concept of pod, a virtual execution
environment for the user-level application. Pod applications
are standard x86 user-level programs that are guaranteed to
execute in an isolated virtual environment. Converting existing
ELF x86 applications to PODARCH-compliant executables is
straight-forward and requires no developer or user involve-
ment. That is, a simple binary rewriting or compilation step
(integrated in our PODARCH compiler toolchain) performs
this conversion. Designing PODARCH as an extension to
existing Intel x86 architecture allows backward compatibility
with legacy applications. Our source code for PODARCH is
available online [7].

Purely architectural primitives for secure application execu-
tion are on the rise. Intel has recently proposed, independently
of our work, a related primitive called SGX. We explain
how our solution differs from SGX both from a conceptual
perspective and in details, offering better compatibility with
legacy OSes and executables while achieving the same level
of security. We present a comprehensive security analysis of
our solution. We implement PODARCH in the MMU of QEMU

2

x86-64 emulator [8] and benchmark PODARCH implementa-
tion on Linux v3.2, running SPEC CINT2006 [26], HBench-
OS [16] and CoreUtils [2] applications which demonstrates
high compatibility. The average performance overhead is 66.07
% for SPEC CINT2006 on QEMU compared to 70-100%
overhead reported by previous work [20]. PODARCH’s per-
formance can be aggressively optimized in a full CPU-based
deployment.

To summarize, we make the following contributions:
• We introduce PODARCH, a new CPU architecture which

fulfills the desirable secure primitives along with achiev-
ing compatibility and scalability with legacy applications
and OS by trusting only the underlying hardware.

• We build a complete commodity Linux system on
PODARCH with changes to the CPU, OS and com-
piler tool chain including a binary rewriter and ELF
loader. Our system is open source and available at
http://bitbucket.org/podarch.

• We demonstrate the usage of PODARCH system for 12
SPEC CINT2006, 18 HBench-OS stress test benchmarks
and 50 case studies from Unix CoreUtils package.
Porting these applications using PODARCH toolchain
requires zero developer effort.

II. PROBLEM & OUR APPROACH

A. Security Objectives
Secure application execution is useful for security-sensitive

applications that need to protect themselves from a hostile OS,
but which shouldn’t be given access to OS state directly. Thus,
providing a two-way isolation between applications and OS.
Consider the scenario where Alice wants to read her CV from
an encrypted file system and send it to a network printer.
The encrypted file system can be downloaded in encrypted
form from a cloud storage service or transferred via a USB
device. Alice borrows Bob’s laptop to access and decrypt her
CV before printing it. She does not trust the software running
on Bob’s machine which can be a compromised OS running
a malware. This malware can steal her secret key for the
encrypted file system and decrypt all her files. On the other
hand, Bob may not trust Alice’s sensitive application to run
in privileged ring (ring 0) because it can compromise his OS
or other sensitive applications by running malware, or worse,
consume all the system resources.

To address Alice’s problem, we envision a portable en-
crypted filesystem application (PODFS) — a user-level en-
crypted filesystem along with file utilities, which can be carried
on a portable device such as a USB stick or imported over
the network. We need a solution to solve this dual problem of
safeguarding Alice’s files, application key and Bob’s operating
system from one another. Our solution assumes a trusted
hardware, but an untrusted OS 1 model, i.e., we assume that
the adversary doesn’t mount hardware attacks (e.g., cold-boot
attacks [25], JTAG debuggers [10]) on the target device, but
prevent any malicious software or OS from compromising the

1We refer readers to work by Chhabra et al. [21] for detailed view of the
landscape of threat models considered in previous works.

sensitive application. Our solution provides both integrity and
confidentiality for the sensitive application’s code and data
memory throughout its execution, while maintaining standard
process semantics available on commodity OSes today. The
security goals and scope of our solution are described below.
Secure Execution vs. Detection. The secure execution prim-
itive is meant to execute an application in ring 3 on a
compromised OS, not merely serve to detect a hostile OS.
For example, if the OS is not in a known white listed state at
the time of application execution, the application should still
run with isolation guarantees. The secure execution should not
rely on the OS to boot up in a clean state.
Unprivileged Execution. We aim to run the application in
ring 3, not below or within the OS (ring 0) as is common in
VM introspection techniques. The secure execution primitive
should not allow the application to have unfettered access
to resources (e.g., physical memory, execution time slices).
The OS should be able to pre-empt or deny execution of the
application at any time, just like for regular applications.
Small TCB & No Software Trust. The additional logic to the
application should be small, typically increasing the code size
by a fixed small amount. As a side advantage, this leads to
applications that can be imported easily and are much smaller
than (say) bulky VMs making the solution easier to deploy.
Further, the primitive should require no software component
outside the application binary to be trusted or to be verified.
The implementation of the TCB in the CPU is fixed, can be
verified once during manufacturing and thus can be secured to
software tampering attacks. Several previous solutions instead
rely either on a trusted hypervisor software, a trusted VM or
trusted LibraryOS [14], [17], [20], [21], [29], [36].
Compatible with Legacy Applications and OS. Our goal is
to keep the OS and process execution semantics as unchanged
as possible, making it easy for legacy applications and OS
to be deployed on the primitive. Further, we aim to maintain
backwards compatibility to the ISA, i.e., other legacy applica-
tions (unmodified) can run in parallel with the secure execution
enabled application.
Scope. Secure application execution is not intended to be
a stand-alone primitive that is useful by itself and is fairly
complementary to abstractions provided by existing hardware
primitives (e.g., TPMs) and hypervisor-based mechanisms.
PODARCH doesn’t rely on secure boot or remote attestation to
import and execute a pod binary, unlike many existing solu-
tions. PODARCH’s security semantics are defined at the level of
subsystems implemented by the CPU, i.e., for MMU, DMA,
interrupts and so on. To achieve higher-level semantic guar-
antees, such as ensuring that the keyboard inputs and screen
outputs remain confidential, requires additional abstraction like
trusted paths to I/O devices (e.g., keyboards) [48]. Similarly,
secure application execution does not apply to subsystems
outside the CPU’s control like disk systems. For example, if
the PODFS application requests access to file stored on the
local disk, the filesystem namespace integrity (e.g., pathname
resolution correctness) is not guaranteed [28], [37]. Techniques
orthogonal to PODARCH’s primitives can be used to achieve
these, and many of them may require additional assumptions

3

from the target OS and hypervisors.
Secure execution does not trust any software outside the

sensitive application binary. However, this does not imply that
application itself is free from vulnerabilities, such as low-
level memory corruption bugs. Defenses against these must
be implemented by the application itself. For example, the
application can implement CFI enforcement using secret IDs
in its code blocks to provide additional guarantees [12], [45].
But this is beyond our direct goals.

Finally, secure execution primitives do not protect applica-
tions outside of the CPU’s environment or on CPUs which have
been tampered with and reverse engineered. For example, the
PODFS application is an encrypted binary. We assume that its
encryption key is not accidentally delivered to a malicious user
(say Mallory) who runs the binary on a compromised CPU. A
secure key management mechanism is necessary to ensure that
the key is delivered to the right CPU (Bob’s) and not tunneled
to a remote attacker’s machine. However, key management is
not the main focus of our work and we discuss one solution we
have implemented (out of the many options) in Section III-A.

B. PODARCH Approach

To achieve all the properties outlined in Section II-A,
PODARCH introduces the abstraction of a pod. A pod is a
standard x86 process which acts as a unit of isolation at ring 3
(user-level) from all other software at all privilege levels. Each
pod binary is encrypted with a distinct application secret key,
which we refer as kapp. At runtime, this key acts as a separate
principal isolated from other mutually untrusting principals —
the OS, other pod and non-pod processes.
Main Design. PODARCH combines techniques of on-demand
encryption (or memory cloaking [20]) with a set of new
security invariants (detailed in Section III-B) to implement
checks completely in hardware. Rather than requiring any strict
partitioning of physical memory, PODARCH allows the OS
to allocate arbitrary physical pages, possibly non-contiguous,
to pod’s virtual address space. PODARCH tags such physical
pages as “owned” by the pod principal. If OS accesses these
physical pages or swaps them out, they are encrypted on-
demand using authenticated encryption and are decrypted
lazily only when the legitimate pod accesses them in ring 3.
This mechanism keeps compatibility with the OS’s demand
paging and memory allocation algorithms. Further, PODARCH
enforces a set of critical invariants for control flow transfers
between the pod and kernel, page permission control, virtual
address to page content bindings, page integrity protection, and
distinctness of virtual-to-physical mappings to carefully protect
against illegal access by the untrusted OS. PODARCH stores
all AES-GCM integrity metadata for each pod within the pod’s
virtual address (VA) space, thereby piggybacking on standard
OS paging mechanisms for memory management. During
the PODARCH design, we make no assumptions about the
security of control state registers, OS-specific data structures,
or access to sub-systems (such as disk or protected physical
memory) that are under the control of a typical hypervisor-
based solution.

PODARCH removes any assumptions on remote attestation
or secure boot by enforcing that pods be encrypted until they
begin execution. This means that pod binaries are encrypted
(under kapp) with AES-GCM and can be imported over a USB
device or from the cloud via an untrusted OS. We explain how
an existing x86 application is setup and used in a PODARCH
CPU below.
Setup & Usage. In PODARCH, the application binary to be
securely executed is encrypted with authenticated encryption
before it is imported onto the target device. We consider the
example described in Section II-A to explain how PODARCH
can be used for solving Alice’s problem. The first step in
using PODARCH for such secure execution is to prepare a
pod binary. Alice first selects an AES application key (kapp)
which is used to create her encrypted application binary. She
uses the PODARCH toolchain which takes a set of ELF x86-
64 object files and generates a statically linked pod binary
encrypted under kapp. This step is called the pod sealing.

Every PODARCH CPU has its own secret unique private
key (kcpu). This key is embedded in the hardware during
the manufacturing. The corresponding public key (kpub) for
each CPU is registered and made public by the manufacturing
authority. This can be made available on the device (e.g., as
a QR code) for easy access. When Alice wants to execute
her sealed pod on a selected target CPU, she has to deliver
the kapp securely. To do this, Alice encrypts her application
key (kapp) with the CPU’s public key (kpub). The resulting
encrypted key (k̂) is such that only the target PODARCH CPU
can recover the kapp. Alice imports the sealed pod binary and
the target-specific k̂, on to the target machine (say, via a USB
or via network). The k̂ can then be delivered to the genuine
target CPU by the compromised OS; only the CPU of Alice’s
choice can recover kapp from k̂ as its encrypted under kpub.

To obtain the correct kpub of the target CPU, we can use any
secure key management mechanism. We discuss one concrete
idea in Section III-A which is operationally user-friendly
and needs no manual key provisioning in the BIOS/CPU.
Our choice of key management infrastructure is based on
simplicity; it can be achieved via different authenticated key
exchange protocols piggybacking on TPM-based public keys
in the future, without changing the core design of PODARCH.
Once the k̂ is delivered to the target CPU, only that CPU can
execute the pod. This eliminates malware attacks which try to
emulate a compromised (or revoked) CPU [1], [30] or tunnel
Alice’s application to a remote attacker’s machine where the
attacker can mount additional attacks like cold-boot attacks
(See Section V-A) [25].

C. Differences from Existing Solutions
Various techniques piggybacking on hypervisor-based mech-

anisms [20], SRTM primitives in TPMs [6], DRTM mecha-
nisms in TPMs [33], VM isolation [47] and library OSes [36]
have been proposed. Some of these solutions like library OSes
can be used in conjunction with PODARCH but they do not
satisfy all the goals of PODARCH when used independently.
All of the above solutions depend on software TCB unlike
PODARCH which is purely an architecture based security

4

 Application

Private Memory
(I-PACT)

PodArch CPU

Private
 Registers

New Instr
 Support

Untrusted OSPod Binary Loader
PodArch-enabled

 Application

Compiler Tool Chain

Alice Bob

Figure 1: PODARCH Design. The shaded regions indicate the
modifications to the existing system. Only the hatched region
is trusted.

primitive. In fact, the functions of their software layers are such
that they cannot be moved to the CPU — e.g., reading disk
or OS data structures, or spawning processes. We discuss the
trade-off between the compatibility and security assumptions
in each of these techniques in Section VII. Here, we limit
the discussion to the only available architectural primitive for
secure application execution proposed recently.
Intel SGX. PODARCH is closely related to a recent pro-
posal called Software Guard Extensions (SGX) from Intel
(announced in September 2013) for its future CPUs [34]. These
extensions allow an application to instantiate an enclave i.e.,
a protected area in the application’s address space. It achieves
secure execution by giving a separate region of physical
memory to enclaves and prevents the OS from accessing the
enclave’s physical pages.

PODARCH has been developed independently and concur-
rently with Intel SGX, and as of this writing, no public
implementation (CPU, OS, applications, etc.) is available for
Intel SGX. PODARCH and Intel SGX seem to offer similar
levels of security at a high-level: protecting against malicious
compromised OSes. However, at a technical level, PODARCH
has at least 3 conceptual differences, and several other differ-
ences in design details, which we demonstrate with a complete
system evaluation in this paper.
1. Physical memory partition. SGX requires the OS to par-
tition out a contiguous region of physical RAM for enclaves,
and both the OS and the applications need to be programmed
to be aware of this separation. PODARCH does not need the
OS/applications to be aware of such partitioning, thus retaining
transparency to the legacy OSes and applications. On the
other hand, memory management semantics of a SGX enclave
change the traditional OS design, since it has to manage both
the system and the enclave memory, and hence losing on its
transparency property.
2. Executable Binary Encryption prior to loading. SGX does
not protect code/data in the executable binary before being
imported in an SGX enclave; it relies on local and / or remote
attestation to check code integrity after the EXE is loaded.
This requires a quoting enclave to be running securely on the
target machine 2. The integrity of the quoting enclave is in
turn checked by a remote verifier. In contrast, PODARCH uses

2At least one remote attestation needs to run to start a root-of-trust enclave
on the target machine.

Prev. Work HW OS OS Hyp App.
Attacks Attacks Compat. /∈TCB Port.

XOM [31] X X X
AISE [39] X X
OverShadow [20] X X X
SP3 [46] X X X
Bastion [17] X X X
HyperWall [41] X X X
SecureME [21] X X X X
Intel SGX [34] X X X

PodArch X X X X X

Table I: Insufficiency of related work. Column 2-6 denote if so-
lution is secure against hardware attacks, OS attacks, maintains
compatibility with existing OS, does not include hypervisor
TCB and the ease of porting application respectively. A X
denotes that the technique demonstrates the property and a
blank cell denotes that the property is not supported.

Figure 2: Structure of pod executable binary produced by the
PODARCH compiler toolchain after pod sealing.

encrypted executable binaries which are decrypted only after
the OS loads it safely, without necessarily relying on remote
attestation.
3. Restricted System Call support. Standard system calls are
not available to an enclave since SYSCALL and SYSENTER
instructions are illegal inside the enclave [4]. Alternatively,
enclaves may invoke systems calls by explicitly passing the
system call parameters out of the protection enclave. SGX
does not specify the security semantics of such an interface,
which may be susceptible to subtle attacks [18]. In contrast,
PODARCH allows pods to invoke system calls from protected
code pages via a carefully designed interface (See Section IV).

In summary, Intel SGX can offer the same level of se-
curity as PODARCH by relying on attestation abstractions.
In contrast, PODARCH aims to maintain compatibility (or
transparency) with legacy OSes and binaries offering an end-
to-end mechanism for protecting EXEs without necessarily
relying on local / remote attestation. A complete comparison
would only be possible when a SGX-based CPU prototype,
OS and application infrastructure is available in the future.

III. PODARCH OVERVIEW

PODARCH applications are largely akin to regular x86
applications, except that they are designed to be run only on
genuine PODARCH CPUs. We discuss the steps in creating a
pod binary, its loading, execution and termination below.

5

A. Pod Lifecycle

Key Management. An important challenge is that Alice does
not know beforehand, the identity of the (borrowed) CPU she is
going to use for execution. How does she seal the binary with
kapp? To solve this, we envision a simple strategy, a mobile
application which Alice can use before using the borrowed
machine. Alice first scans the QR code which encodes the
CPU’s public key from the target machine and feeds it to
her mobile application as shown in Figure 1. The mobile
application then connects to the PODARCH service and checks
if the target CPU is not a revoked CPU. After the affirmation,
Alice enters her application key in her mobile and asks it to
generate target specific k̂. Now Alice can submit this k̂ along
with the pod binary to the OS for setting up a secure pod. Note
that other key delivery mechanisms such as authenticated key
exchange can be used but that is not the focus of this paper.
Pod Loading. During sealing, the toolchain adds metadata
and set of security descriptors to the ELF binary (See Sec-
tion IV-D). Specifically, pod executables start with a pod
identifier which allows the OS to recognize pod binaries. nbut
it performs one additional step. Specifically, the pod loader
reads encrypted metadata headers namely, the identity, page
integrity, virtual page and virtual interrupt descriptors from
the executable binary. It registers them with the PODARCH
CPU via a special instruction pod_load. The OS also loads
the k̂ into the CPU as a part of this instruction. PODARCH
CPU stores this information in its internal data structures. It
uses this information later to check the post-load integrity and
to further protect the pod.

Like in regular legacy applications, the OS also sets up the
virtual address space for the pod, but doesn’t allocate physical
pages to it. The virtual to physical memory allocation is han-
dled lazily during execution (demand paging) in commodity
OSes. PODARCH keeps compatibility with demand paging.
Pod Execution. The OS is not trusted to have loaded the binary
correctly. When the pod begins execution in ring 3, the first
instruction at the entry point is a special instruction called
pod_enter. This instruction checks the pod setup by the
OS in the previous phase. To this end, the PODARCH CPU
recovers kapp by decrypting k̂ and uses it to decrypt the pod
metadata in the CPU. The CPU further checks the number
of pages, the contiguity of the pod’s VA space using this
metadata, details of which are discussed in Section IV-D. This
is necessary to assert a faithful setup of pod before execution.
If the OS has failed in this setup, pod_enter detects it and
terminates the pod’s execution securely.

PODARCH CPU isolates pod’s execution from the OS and
non-pod applications. The OS can allocate any physical page
to pod’s VA (unlike SGX), and the allocated physical memory
range need not be contiguous. The MMU checks each virtual-
to-physical (V-P) address translations and thus tracks which
physical pages are mapped to the pod (or are “owned” by
the pod). Further, it enforces a key invariant: whenever the
pod-owned pages are accessed by DMA-capable devices or
mapped to the address space of other applications, they are
encrypted with authenticated encryption transparently. Decryp-
tion of these pages is done lazily, that is, only when the

encrypted page is accessed by the pod application in ring 3.
This mechanism ensures that the OS can re-allocate physical
pages to other applications or swap them out, if needed, and
hence offers compatibility to the demand paging and memory
management logic of the OS (See Section IV). Loading of the
encrypted binary pages from disk also works in transparent
way. This ensures that when the physical page is swapped
out or reallocated out of the pod’s VA space, it is always in
encrypted state.

The execution of pods and the OS interleaves on the
PODARCH CPU. The transition from the pod (ring 3) to
the kernel constitutes a security “context switch”. These may
occur due to hardware interrupts, software interrupts (including
system call interrupts) and exceptions. PODARCH incorporates
additional mechanisms for preserving data integrity across
context switches and allows control flow to return only to
valid vectored entry points. We discuss the full details of these
control flow restrictions in Section IV-D and Section IV-F.
Pod Termination. By design, PODARCH allows the OS to kill
the pod at any time including a normal process termination.
The pod_exit instruction can be used to instruct the CPU
to safely terminate the current pod. Also, if the OS violates
any of the PODARCH’s security invariants during execution,
PODARCH securely terminates the pod application. During ter-
mination, the registers contents are zeroed and the unencrypted
physical memory pages of the pod are encrypted. All entries of
the pod pages are cleared in PODARCH’s internal structures.

B. Security Invariants

To guarantee secure execution of application in presence
of a compromised operating system, our solution enforces the
following security invariants.
SI-1: Secure Loading. CPU always executes an application

loaded by the OS after verifying if the virtual address layout
is consistent with that specified by the pod application.

SI-2: Secure Sharing between pod and OS. A pod can
securely share data with OS or other pods only through virtual
address space specified as public by that application.
SI-3: Sound Authority Tracking. PODARCH private register
RegCEA always tracks the current executing authority kapp.
SI-4: Single Owner. A physical page is mapped only to a

single pod-owner identity.
SI-5: Safe Access of Resources. Any identity other than kapp

always accesses physical resources of kapp in encrypted form.
SI-6: Distinctness. Every physical page is distinctly mapped

to only a single virtual page at any instant in the TLB.
SI-7: Secure Vectoring. The instruction executed after a

context switch must be a valid VA defined by kapp.
With the above outlined security invariants PODARCH

achieves the desirable primitives for secure execution and
ensures confidentiality and integrity of an application’s code
and data. We discuss the detailed design of PODARCH in the
next sections and explain how each of these security invariants
are enforced in our solution.

6

C. Security and Compatibility Challenges
Once the application’s key is in the CPU, there are several

challenges to load and execute the application in isolation
from the OS. The main challenge in designing PODARCH
stems from two sources: compatibility while ensuring two-way
isolation between the OS and the application throughout its
lifetime. We discuss several important ones below.
Secure loading. The normal binaries (say ELF executables)
presently rely completely on the OS to load all its pages in
the memory and start execution. A malicious OS can tamper
with the section contents, make the physical page layout
inconsistent with the executable’s, overlap code and data pages
maliciously, and so on. The pod delegate the checks against
these attacks before starting execution to the CPU. This is
addressed by enforcing security invariant SI-1.
Physical memory allocation. Once an encrypted executable is
loaded, the pod’s pages must be isolated from access to the OS
and other applications. One way to do this is to allow the pod to
control the region of physical memory allocated to it — indeed,
Intel SGX and DRTM-based mechanisms delegate physical
memory management to the application. However, this creates
a large incompatibility to the semantics of legacy ring-3
applications (which solely deals with virtual memory). Further,
the OS’s physical memory management logic must be changed
to accommodate the application’s demands; for example, de-
mand paging mechanisms in the OS allow processes to share
physical pages as late as necessary. Growing and shrinking
virtual pages on-demand requires the pod to implement page
management logic. Ideally, we seek a mechanism which leaves
the application’s and the OS semantics of virtual memory
largely unchanged — that is, the application should only be
concerned with managing its virtual memory, while the OS
can freely decide the physical memory management for all
applications (including non-pod applications).
Physical memory protection. The PODARCH CPU must
isolate the application’s memory from the direct access by
the OS, by default. However, when executing in ring 0, how
does the CPU know which application’s virtual page is a
physical page allocated to? In many hypervisor-based solutions
to introspect application processes, the hypervisor relies on the
untampered state of process-identifying control registers (e.g.,
the CR3 or OS specific process data structures in the memory)
to identify processes and shadow page tables to determine
page ownership. However, if the guest OS itself is malicious,
identifying the process based on the assumption that process
control register isn’t spoofed is a challenge. Ideally, the CPU-
based mechanism must make minimal assumptions, such as
not depending on the state of CR3 register maintained by the
OS.
Off-RAM protection. The application’s data can be exfiltrated
via DMA-capable devices off-RAM into swap space, where it
is outside the CPU’s restrictions and thus can be tampered
with. In fact, page management functions of OS rely on these
even for benign functionality. Ideally, the OS should be able to
use these functions without much modifications to its existing
logic for swapping and disk access. At the same time, the pod’s
application data must be protected on the swap / disk device.

Maintaining control flow & Data state across pre-emption.
Application’s execution can be pre-empted by interrupts and
faults. During such pre-emption, the OS can change the control
flow of the pod (by changing the EIP) or more subtly, reorder
the physical pages allocated to a contiguous range of virtual
addresses. These are ways to change the control flow without
failing any virtual address based checks that the pod may
implement. Similarly, the OS may tamper the register state.
Designing a secure system against these attacks is important.
Interfacing with the OS. How does the pod exchange le-
gitimate data with OS via system calls, if all its memory is
accessible only to itself? The design requires safely sharing
intended data between the OS and the application. That is,
the mechanism must allow the application to specify which
parts of its virtual address space should be accessible to the
OS or to other applications/pods to enable legitimate data
sharing. Hypervisor-based solutions do not permit such app-
specified control over the application’s address space which
may force incompatibility with application’s needs (e.g., for
memory sharing) [20]. PODARCH enforces security invariant
SI-2 to allow secure interfacing with the OS.

IV. PODARCH DESIGN

So far, we have discussed the lifecycle of pods at a high
level. We now discuss the design details of each phase along
with the key factors that help us achieve our goals.

A. Security Invariants for Memory Management
PODARCH must prevent different principals (OS, non-pods

and other pods) from accessing pod’s memory pages. To this
end, PODARCH tracks the ownership of each memory unit
(physical page) allocated to the pod and prevents malicious
access by non-owners. The semantics of the pod define a
unique identity (kapp), that is the key associated with the pod
application. Each pod has a specific owner identity principal
i.e., its kapp. All other principals (OS, non-pod applications)
on the system have their identity set to a null principal.
Tracking Current Executing Authority. At the time of
any virtual to physical (V-P) address translation, the CPU
ascertains the current executing authority and stores it in an
internal register called RegCEA. The RegCEA is initialized
with the kapp of the pod when the OS first initializes the
VA space of the pod. The OS calls a new special instruction
pod_load asking the CPU to bind the kapp with a certain
process identity — specifically the CR3 value. Subsequently,
whenever switching to ring 3, the CPU uses the CR3 value
to lookup the associated kapp and sets that as the current
executing authority in RegCEA (SI-3). In ring 0, the RegCEA

is set to null. Note that the CPU does not track the updates
to CR3 for the same application, since the OS can maliciously
try to access the pages by manipulating the CR3 value. The
first CR3 value that OS allocates to the pod process is used by
the CPU throughout that pod’s lifecycle. If the OS creates new
page tables for the same pod process and uses a different CR3
value, PodArch will not use the updated CR3 value as the OS
might have tampered with the page table to access pods pages

7

– which is a security threat (see Section V-D). PODARCH does
not trust the CR3 value in enforcing any memory protection
and security guarantees — it is merely used to lookup kapp.
Tracking page ownership. Once a physical page is allocated
by the OS to a specific pod, the CPU marks the corresponding
pod as its owner. Specifically, the CPU has an internal data
structure that maps each physical page to its corresponding
owner (identified by kapp) (SI-4) , i.e., the CPU maintains
the physical page to owner mapping (P7→kapp). This data
structure is called an Inverted page access control table (I-
PACT). The concept of I-PACT in PODARCH is similar to
that of inverted page tables (IPT) which has been widely
used for page management in traditional systems for better
performance [3], [9] and for hardware-controlled protection
of memory resources [41]. Figure 4 shows the structure of
I-PACT.

The CPU’s MMU observes V-P translations for all appli-
cations (and the OS) on the system. Thus, it is easy for the
MMU to track a reverse mapping P-V. The CPU does not
perform any translation in its internal table. Whenever the
MMU encounters a new P-V mapping, it finds the current
executing authority (RegCEA) and associates it as the owner
of the physical page. This (P7→<V, kapp >) mapping is stored
in the I-PACT, which associates the physical page to its owner
pod and the virtual address. With demand paging as in modern
OSes, these bindings can change as the OS decides.
Address translation checks. The CPU performs certain se-
curity checks at each virtual to physical address translation at
runtime, described below.

Ownership checks. One of the critical checks is to ensure
that each physical page is only being accessed by its legitimate
owner. That is, for each memory accessed in ring 3, the access
is allowed if and only if the physical page is owned by the
current executing authority (RegCEA). If the OS spoofs any
values in determining the current executing authority (such as
the CR3 register), the RegCEA value will not match the owner
in the I-PACT for the accessed page, and the ownership check
will fail.

On-demand encryption and content integrity checks. During
a V-P address translation, the CPU performs an on-demand
encryption of the page if the page owner does not match
the RegCEA of the page, thus enforcing security invariant
SI-5. The CPU encrypts the physical page on-demand using
authenticated encryption with the key of the current executing
authority (RegCEA) and updates the new owner in the I-
PACT. Then, it marks this physical page as encrypted by
setting a swap bit in the I-PACT; this bit is also used in the
pages accessed by DMA-capable devices, as discussed below.

Encrypted pages are decrypted lazily, that is, only when
they are later accessed by the legitimate owner in ring 3.
Specifically, the CPU decrypts a page marked encrypted (swap
bit = 1) if and only if the current executing authority’s key in
RegCEA successfully decrypts the authenticated encryption.
Note that authenticated encryption (e.g., AES-GCM) provides
authenticity, i.e., the wrong key will result in a failed de-
cryption. Any attempts by the OS to set the wrong RegCEA

will result in failed decryptions. The CPU performs these

decryptions when it encounters a new P-V mapping in address
translation. A successful decryption ensures that the page was
encrypted under the owner’s key, and that its confidentiality
and integrity is preserved. Only if the decryption succeeds in
the address translation, the CPU associates this physical page
to kapp (stored in RegCEA) in its I-PACT. This way, the CPU
consistently ensures that the content of the physical memory is
associated to the right kapp, starting from the first decryption
of the pod’s pages after being loaded from the binary until the
pod’s termination. Note that this on-demand encryption and
lazy decryption keeps compatibility with demand paging, just
like in the semantics of regular x86 applications.
VA-to-content Binding. The PODARCH CPU allows the un-
trusted kernel to allocate arbitrary physical pages to the virtual
address space of the pod. This can have subtle consequences.
For example, an OS may not load the first page in the code
section of the pod executable to its legitimate VA location; or,
it may layout the memory out-of-order by (say) mapping the
VA of the second page to the contents of the third page of the
executable. Simply checking that a physical page is “owned”
by a certain pod is therefore not enough.

One naive solution to this problem is to associate the
virtual address to the actual content of the memory pages
(and the static binary content). To do this, one could combine
the start VA of each virtual page with the page’s content
when generating the authenticated encryption (AES-GCM),
thereby binding them together. For example, if the virtual
address 0x8048000 is the VA for the first code page in the
executable, this VA could be appended to the page’s content
before computing the AES-GCM encryption of that page. This
works but is incompatible with relocatable code, i.e., for code
/ data pages for which the VA addresses are determined at
load-time dynamically. To keep compatibility with OS features
like address space layout randomization (ASLR) and other
position-independent code, in PODARCH we give each virtual
page a relative virtual-page number (VPN), not its absolute VA.
Therefore, all pages in the virtual address space are relatively
positioned and receive VPNs in that order. This relative VPN
is combined with the page contents whenever the AES-GCM
encryption is computed, thereby eliminating attacks wherein
the contiguous order of the virtual address space is subverted.

Metadata such as the AES-GCM integrity tag, for all the
virtual pages are also stored in the reserved region of the
process VA space and not in the CPU. Each pod maintains
the metadata for all the virtual pages in a special data struc-
ture, namely Virtual Descriptor Table (VDT). If we treat the
complete VA space of a process as contiguous, the VDT can
be large —- proportional the 64-bit address space, if naively
designed. However, only a small fraction of it may be in use.
PODARCH only stores the information about this used fraction
of VA space in the VDT. This results in having the VDT be
segmented —- each virtual page is indexed by <VDTSeg,
VPN>. We discuss further about this in Section VI.
Distinctness. Each page in the virtual address space of the pod
process must be mapped to a distinct physical page (SI-6) . If
not enforced by the CPU, it can be used by an OS to overlap
the two different virtual pages to the same physical page.

8

CR3 Owner
(kapp)

C_VDTS D_VDTS S_VDTS H_VDTS ...

CR31 k1 c1 d1 s1 h1 .

CR32 k2 c2 d2 s2 h2 .

CR33 k3 c3 d3 s3 h3 .

.

.
.
.

.

.
.
.

.

.
.
.

.

.

Figure 3: Data structure in CPU private memory, contains
CR3 7→< kapp, VDTBs > mapping. PODARCH can support
8 VDTBs.

For example, the malicious kernel could overlap pod’s stack
and data pages, thereby causing unintended control flows and
data corruption. As explained above, associating the relative
VPN with the content of a page ensures that different virtual
addresses map to different physical pages; in fact, more strictly
the CPU enforces the linear ordering of the pod’s VA space
with each VDT segment. Such attacks are thus defeated.
Dynamic Changes to the VA. The pod process is free to grow
or shrink its VA space at runtime; in fact, the stack segments
on most Unix-like systems is dynamically allocated by the
OS without explicit system calls from the pod. The pod need
not do anything special for new pages added to its ownership.
Whenever the CPU sees a new virtual to physical mapping
for an owner, it implicitly adds it as the owner of that page.
By default, newly added pages are treated as private to the
pod. Integrity checks and encryption of dynamically allocated
virtual pages is exactly the same as the statically loaded pages.
If PODARCH wishes to override the default policy of treating
all dynamically allocated pages as private, it can use two
special instructions (pod_addva & pod_delva).

B. DMA

The OS needs the ability to swap out pages for its benign
functioning. At the same time, DMA transfers can be used
by a malicious OS to move a physical page content to the
disk where it can be tampered with. PODARCH CPU, thus,
intercepts on writes to the DMA ports (as specified by the
chipset specifications) and detects if a page owned by a pod is
scheduled for swap out. If so, the page is encrypted on-demand
and a swap bit in the I-PACT is set to 1. As mentioned earlier,
decryption is done lazily and only when the pod accesses the
page later in ring 3, i.e., when a memory load instruction
accesses a page marked with swap-bit = 1.

C. Context Switches

A switch from pod’s user mode to kernel constitutes a
“context switch”. A typical context switch comprises of two
tasks — register save-restore and control vectoring. This opens
up attacks via the interface between the pod and the OS.
The virtual interrupt descriptor holds the list of all such pod-
specified registers.
Traps, Faults and Interrupts. The CPU handles these types
of interrupts as follows. This is similar to the techniques used
in hypervisor-based solutions and SGX [20], [34].

Register Save-Restore. When an application receives an
interrupt from the CPU or a programmed software trap, it is
delivered to the OS. Traditionally, the CPU stores the process’s
register states but does not clear it before passing the control
to the OS. A malicious OS can glean sensitive information if
the registers used by pod are not cleared/safeguarded before
switching control from ring 3 to ring 0. Similarly, the OS can
influence the execution of the pod by corrupting the register
values used by the pod when transitioning from ring 0 to
ring 3. Hence, PODARCH’s default policy is to save all the
registers (as in traditional CPUs) and additionally clear them
when leaving/entering the pod. If the pod wants to over-ride
this policy it can explicitly specify which registers are not to
be cleared when entering and/or exiting the pod. System calls
and signal handlers in the program can legitimately share the
register values with the OS for passing arguments, program
state, return values, etc. This way to support the necessary
ABI, the pod can explicitly specify the set of registers as a
part of the virtual interrupt descriptors in the pod binary (See
Section IV-D).

Control Vectoring. After serving the interrupt / fault / trap
/ exception, the OS returns control to the pod in ring 3. The
OS can exploit this interface, by tampering the return address
into pod. Specifically, it can ask the pod to start execution
at any arbitrary point in pod’s code. Thus the OS should be
limited to return to only fixed entry addresses in the pod. To
ensure this, on switching from ring 0 to a pod in ring 3, the OS
is allowed to enter to the pod only at valid entry points (SI-
7). After handling faults and hardware interrupts, the execution
must resume at the previously executing instruction or the next
instruction in the pod respectively. The CPU checks this when
the kernel returns to the pod to resume execution. The original
semantics of the CPU for traps, faults, and interrupts are the
same. For system calls and signal handlers, the pod can register
a set of valid entry points to the pod. They should be specified
in the virtual interrupt descriptors in the pod, details of which
are discussed in Section IV-D. The CPU checks if the entry to
the pod is one of these valid addresses and only then allows the
pod to resume execution. If the check fails, the pod is securely
aborted.
System Calls (User Defined Interrupts). All the pod’s system
calls pass through custom wrappers in the pod. These wrappers
are added to maintain compatibility with the OSes semantics.
Specifically, they marshal and unmarshal the call arguments
and the return values respectively, by copying (deep-copy
for pointers) them in pod’s public pages. They also include
sanitization code to check that all the data exchanged between
the OS and pod lies within pod’s public pages. The mechanism
is carefully designed to be resistant to TOCTOU attacks i.e.,
to perform the copy to private pages before executing any
sanitization checks or using the data [24]. We discuss the
details of this mechanism in Section IV-F.

D. Changes to the Pod Executable

The VDT holds following three kinds of security metadata
descriptors.

9

Page Integrity Descriptor. All the code and data sections in
the pod executable are encrypted with authenticated-encryption
using kapp. The page integrity descriptor contains the integrity
tag of all these pages in the binary to preserve the page
content integrity. The integrity tag is actually calculated by
combining the page content and the virtual page number (VPN)
in the binary. This follows from the VA-to-content binding as
discussed in Section IV-A. It aids the CPU to check if the OS
has not skipped loading some pages or swapped the order of
two or more pages within the pod. Similar ordering checks
need to be enforced across each preemption by the OS as we
discussed in Section IV.
Virtual Page Descriptor. For fine-grained control of memory
sharing, a pod can decide if a virtual page is public or private.
Public pages are directly accessible to the OS (ring 0) and
can be mapped into the address space of other applications
by the OS (enabling shared memory), while private pages are
not accessible directly outside the pod. A pod can also specify
its own set of permissions for its resources (code and data
pages) that are akin to rwx permissions enforced by the OS.
The virtual page descriptor section contains a list of virtual
page addresses, its corresponding page type (public or private)
and ‘rwx’ bits if specified by the application. It is stored as a
tuple (V, page type, r, w, x) in the application binary. PODARCH
checks the page access type during address translation. In case
of permission conflict between those set by pod and the OS,
PODARCH performs a logical AND of the two permission sets
and resorts to the most strict permissions.
Virtual Interrupt Descriptor. The descriptor contains a list
of valid virtual entry points into the pod. It can be for the
system call wrappers, signal handlers, or any other entry points
permitted by the pod. It also contain the register save-restore
metadata. All the registers that should not be cleared when
leaving the pod and when entering the pod for a specific kind
of abort/trap/faults/interrupts are explicitly stated by the pod as
a bitmask in this descriptor. CPU will not clear these registers
when entering and/or leaving the pod.

E. ISA Extension and Wrappers

Supporting PODARCH instructions and data structures.
PODARCH introduces following four new instructions.
pod_load. The OS issues this instruction in ring 0 when
it loads the pod binary for execution. On this instruction,
PODARCH associates the kapp with the newly created pod for
the first time and registers a new CR3 - kapp mapping. The
pod also registers its Virtual Descriptor Table Base (VDTB)
with the CPU when the pod is first created. CPU uses this and
VPN to index the pod’s virtual descriptor table for accessing
the descriptors later during execution.
pod_enter. This instruction is executed in ring 3 after
loading the binary and before starting the execution. On
encountering this instruction, PODARCH checks if the OS has
faithfully loaded the binary and PODARCH metadata. It is a
pre-execution check to ensure that the executable is securely
loaded by the OS.
pod_addva & pod_delva. During the pod execution, a
pod should be allowed to dynamically change (extend or

PPN Owner
(kapp)

VPN Swap
Bit

Page
Type

Read
Permn

Write
Permn

Exec
Permn

Integrity
Tag

P1 k1 V1 0 Public 1 1 0 h1

 P2 k2 V1 1 Private 1 0 1 h2

P3 null null - - - - - -

Figure 4: Inverted page access control table (I-PACT) structure
in CPU private memory, contains P 7→< kapp, VPN > mapping

shrink) their virtual address space. For example, an application
can make a mmap call during program execution. By default
all the dynamically allocated pages to the pod are private and
the rwx bits are set as per OS semantics. If the pod wants to
request pages which are public or with custom permissions,
it is supported via pod_addva. Note that the extended VA
space is also labeled with kapp (fetched from the RegCEA)
and their allocated physical pages are similarly tied to the pod-
owner identity kapp. Pod can delete the public pages or shrink
its virtual address space explicitly using the pod_delva
instruction. Semantically, the instruction clears selective entries
for the pod from the I-PACT.
pod_exit. This instruction can be issued only in ring 3.
It reads the kapp from the current executing authority and
deletes all the I-PACT entries corresponding to kapp. If the
swap bit for the entry is D, PODARCH forcefully encrypts
the physical page content before deleting it from the I-PACT.
On pod_exit, CPU also zeroes the registers that hold pod
specific values (as specified in the pod descriptors) to prevent
the data leakage. If the OS does not use the pod_exit
instruction, the I-PACT entries will lock the OSes access to
the memory that was owned by pod. Hence, the OS must use
the pod_exit to reclaim pod’s memory.
System Call Wrappers. In general, the OS cannot access
the pods pages. Specifically, for system call arguments, the
OS cannot access the memory space of a process executing
within a pod to access/dereference the arguments passed to it.
This hinders the parameter passing in normal system call by
reference and copy. In PODARCH, data passed into system
calls is via public pages as they are accessible by more
than one entities at a time and can be used as a controlled
communication channel between the pod and the OS. Thus,
all the arguments and return values for a system call are
exchanged via public page between the pod and the OS.

To realize this solution, a pod binary has custom wrapper
for each system call. When a system call is encountered, the
CPU directs the execution control to a fixed address in the pod
executable. The code at this address is essentially a table look
up to invoke the appropriate system call wrapper. These wrap-
pers copy the system call arguments (deep-copy) to a public
page and then call the actual system call with the relocated
arguments. When the system call returns, the wrappers copy
the return values from public to private memory of the pod.
Thus, system call wrappers bundled in pod application securely
interface the call arguments both passed by value or reference
(which are not accessible by default) to the kernel.

System calls are a special case of interrupts. Pod explicitly
specifies in its descriptors not to clear the registers set by the

10

pod, so as to send arguments to the system call, For ensuring
the secure vectoring property during system calls, on sysret
instruction the CPU makes sure that the system call returns to
the previously stored address (See Section IV-C). This check
is essential to prevent the OS from returning back to arbitrary
points in the pod (a form of CFI [12]).

F. Changes to the Operating System
PODARCH is designed with an aim to have modest changes

to the current OSes. With zero programmer efforts, PODARCH
design keeps compatibility with copy-on-write, system call
semantics, exceptions and interrupt handling, OS memory
management and dynamic memory management requests by
the pod.

Only two small changes are needed to support PODARCH:
ELF Loader. During ELF loading, the binary (including code,
data and pod descriptors) is in encrypted form. The loader
issues a pod_load instruction and passes the k̂ to indicates
the PODARCH CPU to register the newly created pod. Next, the
pod loader also registers the address of virtual descriptors for
the pod with the CPU. If the OS does not issue this instruction,
the pod creation will be faulty. Once the pod is in execution
the I-PACT check will report missing entries and signal the
PODARCH CPU about its malicious intent thus triggering the
pod’s kill during pod_enter.

Note that, it is possible to combine the functionalities of
pod_load and pod_enter, but this might require the
loader logic to be incorporated in every pod-binary. To avoid
this, we choose to modify the ELF loader in the kernel and add
only the pod_enter instruction as a part of the binary. This
design decision helps to keep the pod light-weight and reduces
the modifcation effort for every application, thus achieving our
goal of easy portability.
VDT Fault Handler. The virtual descriptor table (VDT) is
indexed by virtual addresses (virtual page numbers), and the
Virtual Descriptor Table Base (VDTB) and marks the starts of
the VDT. Each virtual page of the VDT stores its own AES-
GCM integrity tags, so that no further page lookups are needed
to check the integrity of the VDT. The CPU keeps this VDTB
information along with the CR3 - kapp mapping for the pod
(See Figure 3). The VDT pages, thus, appear as normal private
pod pages to the OS. They are lazily loaded with demand
paging when the CPU needs to access them. Page faults may be
generated when the CPU tries to access such VDT pages; we
call these as virtual descriptor faults (VDF). In handling VDFs,
the OS is not allowed to incur another page fault or a VDF.
This is needed to ensure that VDFs don’t trigger recursively.
Therefore, the CPU enforces a strict no-second fault policy in
the handling of VDFs — otherwise, it securely kills the pod
for which the VDT is accessed. The OS needs to be aware
of this restriction about double VDF faults, and handle them
without raising further faults. This is the only change necessary
to handle demand paging in our experiments. In PODARCH,
we implement VDF as a new error code in the existing Intel
Interrupt 14 for Page-Fault Exception (#PF). By design, pod’s
pages are protected from being shared with other pod or non-
pod processes. To support shared memory, two pods can share

data via public pages; if they share a key, they can setup a
secure channel between two processes. We envision that only
the security sensitive part of the application logic will execute
within the pod.

V. SECURITY ANALYSIS

For our threat model described in Section II-A, we revisit
various threats to the confidentiality and integrity of a pod’s
execution with examples and explain how PODARCH achieves
its goals.

A. PODARCH CPU Bypass Attacks

Local CPU emulation. A malicious OS can locally emulate
a compromised CPU and bypass all the PODARCH checks
to compromise the pod. For this, the OS will give Alice the
public key of the compromised CPU. When Alice submits
k̂, OS will use CPU’s private to get hold of kapp. In our
solution, Alice first checks if the CPU is compromised (using
her mobile application) before submitting k̂. Hence, this attack
is not possible.
Remote CPU tunneling. Another scenario where the OS
will try to bypass PODARCH checks is by tunneling all the
executions to a remote compromised CPU. The attack is not
possible as Alice encrypts her kapp specifically for the CPU
which is physically in front of her.
OS ignores pod_load. The OS can bypass the CPU checks
by not loading the pod binary in a pod. If the OS does
not load the pod executable’s metadata during the pod load
phase, pod_enter checks in ring 3 will fail. Thus, the pod’s
execution won’t proceed past the first instruction.

B. Data Access Attacks

Direct access. The OS can try to maliciously access pod’s
pages from ring 0. However, PODARCH’s MMU checks make
sure that whenever ring 0 tries to access pod’s memory, it will
always see an encrypted view.
Indirect access. The OS can manipulate page entries and
corrupt the VA-PA mappings to claim that a pod’s page belongs
to the OS. PODARCH’s I-PACT keeps a track of the PA, <VA,
owner> mapping and hence can detect any such attempts
from the OS. Another subtle attack is wherein the OS maps
two physical pages to the same virtual address in the pod.
PODARCH blocks this attack by enforcing the distinctness
property, which makes sure that every physical address is
uniquely mapped to a distinct <virtual address, owner> pair,
via its VPN-based integrity check mechanism. Ordering attacks
are also blocked as discussed in Section III.
Attacks using DMA. The OS can intercept the DMA transfers
and steal or tamper the data when swapping it in or out of
the disk. Every pod page is encrypted during this operation.
Moreover, PODARCH checks the integrity of the page before
accessing it, thus preserving confidentiality and integrity of the
pages respectively.
Attacks via I/O devices. PODARCH doesn’t provide higher-
level semantic guarantees such as trusted paths to devices (e.g.,

11

keyboards, displays, network) [48]. Techniques orthogonal to
PODARCH’s primitives can be used to achieve these. For
example, the pod application can use SSL protocol inside the
pod to prevent the OS and the network from tampering the
data, or use cryptographic keyboards for safe keyboard inputs.

C. Code Corruption Attacks

Application code modification. The OS or other applications
can subvert the integrity of the execution by tampering the
pages in the memory. It can maliciously ask the pod to execute
arbitrary code by writing it to the pod’s code pages. But
PODARCH does not allow the OS to access the pod’s code
pages. Also, it checks the integrity of a newly loaded code
page before starting execution in that page.
Loading malicious program/library. Instead of changing
the application code, the OS can dynamically load malicious
libraries in the pod and launch attacks through them. To this
end, all the pod binaries are statically linked to trusted libraries
by the user. A pod cannot dynamically link any code. Thus,
the OS cannot use this channel to corrupt the pod.

D. Vectoring Attacks

Direct execution flow redirection. The OS can modify an
interrupted state of a process and force the execution to an
arbitrary location in the pod. To thwart this attack, PODARCH’s
secure vectoring mechanism checks if the return address during
ring transition is the correct entry point in ring 3.
Indirect execution flow redirection. One indirect way to get
the CPU to skip the vectoring checks is to spoof the RegCEA

and fool it into believing that it is not executing a pod. Consider
the following hypothetical attack scenario. When handling an
interrupt, the OS can replicate the pod’s page table entries, and
point the CR3 to this copy. Since this CR3 does not correspond
to a registered pod, the CPU will skip the entry point check
when the OS jumps to arbitrary location in the pod via the
copied CR3 and Page Table Entry (PTE). Thus the OS will
succeed to fool the CPU in believing that it is entering a
non-pod application in ring 3. So the CPU will not do the
entry point check and the OS will succeed in running arbitrary
code in the pod (assuming the code page is still decrypted).
However, this attack will not work since PODARCH checks
the I-PACT on every address translation. When the OS uses
the new CR3 and PTE, the physical address still belongs to
the pod. Hence, the CPU will detect that the OS is maliciously
trying to access pod’s pages.
CFI guarantees. The above two defenses do not guarantee CFI
or absence of ROP attacks from within the pod. We assume
the pod binary adds defenses for such attacks [12].

E. System Service Attacks

Leaking interrupted program state. All applications on
the system share the same set of general purpose registers.
When the CPU changes its execution context, it can leak
information via these shared registers.PODARCH preserves the
confidentiality and integrity of the register values which are

legitimately shared. For example, system call arguments passed
via the registers, the interrupt number passed via the register,
etc. Remaining register values are cleared by the CPU.
System call parameter tampering. Ports and Garfinkel [37]
discuss the potential attacks performed by a malicious kernel
through system call return values. Checkoway and Shacham
introduce a real instance of such attacks - Iago attacks [18],
wherein the OS can attack a pod by data returned from system
calls, which is either a return value or a parameter by reference.
Additional defenses against return values (including virtual
address values) from system calls are the responsibility of the
pod implementation; and can be provided as a part of the pod’s
system call wrappers. Currently, we provide simple system call
wrappers which are a part of the pod that do basic parameter
marshalling checks. They are carefully designed to prevent
TOCTOU attacks and the checks are done only after copying
them to the private memory of the pod. Section VI mentions
the necessary design details.
DOS. The OS can always reject to serve the system service
requests from the pod. It can also starve the pod from resources
such as memory and execution time slice. These denial of
service attacks are out-of-scope in this work.

F. Attacks on PODARCH

kapp Leakage after import. The OS, non-pod applications
or co-existing pod applications can steal the pod’s kapp and
decrypt all the pod data. PODARCH design guarantees that
the kapp is never accessible to either the OS or any other
entity other than the owner pod. The kapp for each pod
never leaves CPU’s internal data structure. RegCEA is flushed
whenever the CPU transitions from ring 3 to ring 0. When
CPU sees a change in executing authority (in ring 3), it loads
the corresponding kapp in the RegCEA.
kapp Leakage before import. We assume that all the cryp-
tography techniques are secure. PODARCH does not prevent
attacks against cryptographic weaknesses or implementation
side-channel [44].

VI. IMPLEMENTATION & EVALUATION

The current PODARCH prototype realizes the full system
described in earlier sections. We demonstrate the practicality of
the system by presenting quantitative results for experiments.
Implementation. We implement our prototype PODARCH for
a single core CPU architecture in QEMU [8], a x86-64
system emulator. We approximately add 5164 lines of code to
QEMU v0.14.1. We modify the Linux Kernel v3.2 by adding
415 lines of code to the elf loader fs/binfmt_elf.c and
arch/x86/mm/fault.c to adapt it to support PODARCH.
All the process specific metadata is stored as a part of the
pod’s address space in the VDT. The CPU uses fixed size data
structures (proportional to the size of physical memory) and
can be implemented as an on- chip cache.
VDT Management. Several data structures in our design
require metadata per virtual page of the pod. For example,
the AES-GCM integrity tags for each virtual page need to be
stored somewhere as metadata. All the VA related mappings

12

Benchmark Description LOC Execution time (in sec) Overhead% Interrupts Context switches Enc Dec SC
tvv tvp tpp pp VS vv Ivv Ivp Ipp Cvv Cvp Cpp

bzip2 Compression 5864 30.24 31.51 41.79 38.21 18001 18011 19091 15688 16474 19036 177275 168876 90
gobmk Artificial Intelligence: go 158055 4.56 4.88 7.20 57.86 6891 7006 7448 6877 6587 7448 111498 105767 287
mcf Combinatorial Optimization 1743 111.44 115.67 174.73 56.79 61003 59882 84215 58771 55662 83089 331 328 1409
h264ref Video Compression 36280 204.44 264.192 352.35 72.35 93611 91881 98776 89876 92332 109889 287339 251891 453
omnetpp Discrete Event Simulation 26979 18.01 27.05 33.31 84.94 8101 9150 10745 7888 9052 10482 8394 6513 188
sjeng Artificial Intelligence: chess 10717 111.78 122.85 182.50 63.27 62899 69765 88769 65548 81773 100318 154737 110786 343
xalancbmk XML Processing 268545 4.28 5.22 7.75 81.14 2875 3272 4282 3199 3044 4192 9003 7510 143
astar Path-finding Algorithms 4453 997.96 1211.88 1640.59 64.39 278445 322145 587789 289611 388001 508471 42821773 42677618 1298
libquantum Physics: Quantum Computing 2635 1.44 2.122 2.58 79.17 799 831 857 870 887 898 374 332 30
hmmer Search Gene Sequence 20878 30.66 32.242 44.27 44.38 8863 8886 9630 7771 7886 9563 1134 1029 63
perlbench Programming Language 128176 1.28 1.363 2.124 65.94 948 1078 1095 610 629 822 321 286 273
gcc C Compiler 382852 32.66 34.998 60.2358 84.43 12776 14907 20516 15229 16224 20039 3680 720 477

Table II: SPEC CINT2006 performance summary for vanilla application on vanilla system (vv), vanilla application on PODARCH
(vp), pod on PODARCH (pp). Column 4-6 gives the execution time in seconds and column 7 gives the % overhead of pod on
PODARCH as compared to vanilla on PODARCH. Column 8-10 gives the no. of interrupts, column 11-13 gives the no. of context
switches for all the three cases. Column 14 and 15 gives the encryption and decryption time required during swapping of pages
during execution. The last column gives the no. of system calls made by the application.

and metadata are stored as virtual descriptors in virtual de-
scriptor table (VDT), initialized in the static binary and loaded
in memory at load time. This descriptor space need to be
extended as the process grows its VA space. Since the VA space
of a process is large, and we aim to support unlimited number
of pod applications, we can’t store them in a fixed region of
physical memory (or else we would need to implement page
management in the CPU). To avoid this, virtual descriptors are
stored as private pages within the pod’s VA space. Note that
virtual descriptors need to only be modified by the CPU, so the
CPU marks them inaccessible to the pod or OS in its address
translations. Any accidental bugs in the pod, thus, cannot be
exploited by kernel to change these descriptors.

To solve the large VDT size problem, PODARCH allows
the application developer to specify different non-contiguous
segments (upto eight in our design) in the address space
thereby segmenting VDT storage in distinct regions. Each such
segment is associated with a start address and the pages in the
region are given VPNs relative to this address. Such segments
are block of contiguous regions such as stack, heap, code
and data, and are upto the binary to specify. The size for the
metadata of these VDT regions are stored in PODARCH CPU’s
internal data structure (See Figure 3). The relative VPN (per
segment) is used to index into the pod’s VDT and fetch the
page metadata.

Internal storage of CPU. There are data structures which only
the CPU needs and are proportional to the physical RAM. For
example, the I-PACT has a fixed number of bits per physical
RAM page (See Figure 4); the CR3 - kapp mappings are
proportional to the number of pods (See Figure 3). The CPU
reserves a small amount of CPU-private physical memory to
store these. This storage is small and thus can fit in a small
amount of memory. In our solution, we use a fixed physical
memory region to store these. This physical address range is
made inaccessible to the OS and applications. This region of
memory could be configured in the BIOS, for example. In a
real CPU, there may be sufficient on-chip memory that could
store this, but since this storage is proportional to the size of
the physical pages, it’s easier to keep it in private memory.

The size of Inverted page access control table (I-PACT) is
constant for a given maximum RAM size supported by the
CPU. One entry in the I-PACT represents one physical page,
and takes 32 bytes. For a 4GB RAM size, the I-PACT requires
32MB private memory space. The remaining data structures (as
discussed in Section VI) require a total of 125KB CPU private
memory to support 1000 pods.
Modification to the tool chain. We modify the GNU GCC
v4.6.3 tool chain to create PODARCH-enabled x86-64 appli-
cations in form of statically linked executables. We develop
a binary re-writer that rewrites any executable to include
pod specific metadata, thus generating a pod binary. We also
modify the ELF loader to load this metadata and save it in the
CPU data structures during the execution of a pod application.
All the user has to do is use our toolchain to create user
specific pod binary, with minimal changes to the Makefile
of the application to add certain .o files for system call
wrappers. The programmer has to include pod_header.h
that contains all the system call wrappers. The source code
is then converted to a pod executable using our modified
compiler tool chain. Our PODARCH GNU compiler toolchain
compiles the application and rewrites the binary to make
it compatible with PODARCH design. Mainly, the modified
toolchain performs the following steps.

(a) Statically compile the application and link all libraries
(b) Link custom system call wrappers for marshalling (c)
Align the sections to the page boundaries (d) Add bootstrap
code and pod_enter instruction for the pod loading step (e)
Support for public pages and custom virtual page permissions,
if specified (d) Encrypt and authenticate the pages with AES-
GCM while keeping the executable’s semantics intact (f) Add
descriptors for the integrity tags for all the encrypted page

A. Evaluation Goals & Benchmarks

We experimentally evaluate the following main goals:
• Efforts to support existing OS and legacy x86 applica-

tions to operate on PODARCH.
• Robustness and scalability of PODARCH.

13

PODARCH Component LOC/size (% change)
QEMU 5164 (0.98%)
Pod Application Wrappers 148
Linux Kernel 415 (0.0051%)
GNU Compiler Toolchain 1749
Increase in Pod executable binary size 168.03 KB (1.2 %)

Table III: PODARCH: Number of lines of code added and
increase in the size of executables for PODARCH system.

• Performance of applications on PODARCH CPU.
We port 12 SPEC CINT2006 and 18 3 HBench-OS bench-

marks and 50 case studies from CoreUtils package on PO-
DARCH architecture [2], [16], [26]. We compare the following
configurations:
• Non-pod applications on Vanilla CPU (Baseline)
• Non-pod applications on PODARCH CPU
• Pod applications on PODARCH CPU
All the experiments are conducted on a Dell Latitude 6430u

host, configured with Intel(R) Core(TM) i7-3687U 2.10GHz
CPU, 8GB RAM. The QEMU VM is configured with one
CPU, 4 GB RAM running 64-bit Linux 3.2.53 Kernel on
Debian Jessie for all the experiments. All the data results are
averaged over five runs and are reported with a 95% confidence
interval.

B. Results
We find that PODARCH offers easy portability, strong

robustness, along with performance comparable to previous
solutions.
Porting Effort. For adapting the Linux Kernel v3.2, we
applied a patch of 415 lines of code. We statically compile
and convert 12 vanilla SPEC CINT2006, 18 HBench-OS
benchmarks and 50 coreutils applications to pod binaries via
PODARCH toolchain and the developer effort was negligible
using our tool. Our system effortlessly transforms these appli-
cations to pod-binaries and executes them on PODARCH. We
exclude those applications that either require dynamic loading
of libraries or accessing shared libraries at run time. We report
that PODARCH does not result in intrusive change to the OSes
and does not require any developer effort to port existing
legacy x86 applications to PODARCH design. The specific
LOC changes are in Table III.
Robustness. We test PODARCH’s scalability and robustness
by stress testing our prototype implementation, in following
two ways.
Scaling with Number of Pods: PODARCH is carefully designed
to support many multiple pods simultaneously. To test the
scalability of PODARCH, we launched multiple instances of
SPEC CINT2006 benchmarks processes in 100 parallel pods.
We report that PODARCH implementation supported these
pods without any hardware memory or register limitation.
System Stress Test: We chose HBench-OS, a system stress
test benchmark which overcomes the shortcomings of LM-
Bench [15]. We study the interactions between the operating

3We do not include 8 benchmarks from HBench-OS which use fork.

Property Sub-property % Ovp % Opp

Cache
Latencies

L1 & L2 299.94 1499.03
L3 699.88 699.93

Memory
Intensive
Operations

Raw Memory Read Bandwidth 74.56 94.98
Raw Memory Write Bandwidth 78.84 96.05
libc Bzero Bandwidth 74.72 95.36
Unrolled Write Bandwidth 78.84 96.06
bcopy Bandwidth 75.79 95.94
Mmap’d Read 17.03 53.24
Raw Hardware Read 74.56 94.98

File System Filesystem Latency 47.81 470.12
Context
Switch

Ctx (excluding) 67.38 118.19
Ctx2 (including) 71.36 182.59

System
Call

getpid 46.94 268.52
getrusage 60.70 427.86
gettimeofday 110.44 608.95
sbrk 94.99 545.64
sigaction 32.69 384.3
write 49.69 477.98

Signal
Handler

Installing Signal 35.42 387.02
Handling Signal 72.80 314.03

Table IV: HBench-OS Summary: Overhead for vanilla apps
on PODARCH (Ovp) & pods on PODARCH (Opp) compared
to vanilla apps on vanilla system(vv). lat ctx, lat ctx2: context
switch latency by excluding & including cache conflict reso-
lution time respectively. The numbers indicate a decrease in
bandwidth for memory intensive operations.

system and the hardware architecture with 18 OS and memory
intensive HBench-OS [16] benchmarks and determine the
precise sources of overhead. These results do not necessar-
ily represent the overheads for real-world applications, but
aggressively test the OS and CPU robustness under stress.
Table IV summarizes the results of microbenchmarks. For
memory intensive operations, the tables shows a decrease in
bandwidth value. Future work can aggressively optimizing
these overheads when implemented in real hardware.
Performance. Figure 5 shows the comparison of vanilla
benchmarks (both on vanilla CPU and PODARCH CPU) to
those of pod-enabled benchmarks on PODARCH CPU and
gives the percentage increase in the execution time for each
benchmark. We also report the number of interrupts, context
switches, system calls, and encrypt-decrypt operations for
each benchmark on PODARCH in Table II. In our present
evaluation, all the computations are performed on a single
core. The average increase in the execution time for the
pod-enabled benchmarks as reported by QEMU is 66.07 %
and negligible memory overhead. Even when measured on
QEMU hypervisor, the overhead is consistent and better than
other solutions. Specifically, it is faster than the existing
hypervisor based solution OverShadow [20] which report 70-
100 % execution time and 100% memory overhead for
SPEC CINT2006 benchmarks [20]. The main factors in the
overhead in PODARCH are I-PACT operations, cryptographic
operations for protection of code and data pages, and system
call wrappers. The performance is only indicative since we
have build a software prototype of CPU like previous other
work [20] rather than a hardware implementation. If done
in a real CPU, the performance will be better. For example,
offloading / parallelizing I-PACT and cryptographic operations
with the instruction execution, or speculative execution of I-

14

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

bzip2 gobmk mcf h264ref omnetpp sjeng xalancbmk astar libquantumhmmer perlbench gcc

E
x
e

c
u

ti
o

n
 T

im
e

 o
v
e

rh
e

a
d

SPEC CINT2006 Benchmarks

Pod’s execution time overhead on PodArch−QEMU
Regular app’s execution time overhead on PodArch−QEMU

Figure 5: Execution time overhead for pod-enabled & vanilla
SPEC CINT2006 on PodArch-QEMU vs. vanilla SPEC
CINT2006 on vanilla-QEMU.

 0%

 50%

 100%

 150%

 200%

 250%

 300%

 350%

b
a
s
e
6
4

e
n

v
m

k
te

m
p

s
e
q tr

b
a
s
e
n

a
m

e
e
x
p
a
n

d

n
ic

e
tr

u
e

fa
ls

e
c
a
t

n
l

fm
t

s
h

u
f

c
h

m
o
d

fo
ld

n
p
ro

c

s
le

e
p

o
d

s
p
li
t

u
n

iq

c
k
s
u

m
h

e
a
d

p
a
s
te

c
o
m

m

h
o
s
ti

d
jo

in

p
ri

n
te

n
v

s
u

m

c
u

t
p
ri

n
tf

w
c

d
ir

c
o
lo

rs

p
tx

ta
c

d
ir

n
a
m

e
lo

g
n

a
m

e

p
w

d
ta

il

d
u

re
a
d
li
n

k

tr
u

n
c
a
te

s
h

re
d

ts
o
rt

c
s
p
li
t

ln
li
n

k

c
h

ro
o
t

u
n

li
n

k
te

e

A
V

E
R

A
G

E

O
v
e
rh

e
a
d

CoreUtils

Pod on PodArch−QEMU

Vanilla on PodArch−QEMU

Figure 6: Execution time overhead for running pod-enabled
and vanilla coreutils on PODARCH and as compared to vanilla
coreutils on vanilla-QEMU.

PACT operations, can enhance the efficiency of PODARCH
CPU.

In summary, PODARCH shows high robustness with com-
parable performance for intensive real world benchmarks. We
also demonstrate that the design is backward compatible to
applications and OSes thus making PODARCH an appealing
solution.
CoreUtils as Case Studies. We demonstrate the expressive-
ness of PODARCH by evaluating on 50 case studies that could
be statically compiled from the coreutils package [2]. We select
CoreUtils as our case studies since they commonly exists on
every Unix OS and include programs which mainly perform
file, text and shell manipulation operations. Our experiments
show that PODARCH is expressive enough to execute any
application that can be successfully generated using static com-
pilation. Our performance overhead is 120% for executing pod-
enabled binaries on PODARCH and 50% for vanilla binaries
on PODARCH as compared to running vanilla binaries on a
vanilla-QEMU (see Figure 6). In our experiments, the input
to all the file-based utilities is a text file of size 10 KB.
The overhead is high for utilities that perform I/O intensive
operations like fmt, cat, od, etc. which read every character
from the input file and write to an output file.

VII. RELATED WORK

We have already discussed the closest related work in
Section II-C (See Table I and V for summary). We compare

other past works to PODARCH in terms of unit of protection,
architectural support for secure application execution, piggy-
backing on protection via TPM attestation and purely hardware
solutions.
VM as a Protection Unit. One way of securing the execution
of mutually untrusted applications is to run each of them in
separate VMs. Previous solutions such as Cloudvisor [47],
Terra [23], NoHype [29] isolate the VMs either via the
hardware or software protection. These solutions include the
VM’s OS into the TCB over and above the application.
Proxos [42] and Drawbridge [36] reduce the OS TCB by
moving much of OS’s functionality to the ring 3 process [36];
however, this bloats the original application significantly and
the mechanism requires thousands of lines of change to the
commodity kernel [36]. A more recent applications of Library
OSes — Graphene and Haven allow execution of multiple
process but still relies majorly on including portions to the
TCB. [14], [43].
Architectural Support. Various solutions such as Bas-
tion [17], SecureME [21], Overshadow [20], SP3 [46], Ink-
Tag [27], TrustVisor [32], Chaos [19] directly support secure
execution primitive via virtualization or special architectural
support. However, they include hypervisor in their TCB,
whereas PODARCH eliminates it. For example, a closely
related work Bastion [17] is designed to launch the trusted
hypervisor (included in the TCB of the solution) securely.
Hence, majority of the security enforcement tasks are delegated
to the hypervisor without any changes to the OS or the
application. The secure_launch hypercall involves actions
such as disk access which cannot be implemented in the
CPU. As opposed to PODARCH design which stores all the
metadata either in the CPU (I-PACT) or the pod (VDT),
Bastion leverages scalable secure storage introduced in the
hypervisor functionality. Unlike pods, the key management
assumptions of Bastion’s TSMs is not clearly stated. Our
descriptors enforce VA-PA distinctness property and also bind
the VA to the content to defeat attacks discussed in Section V,
that Bastion may be susceptible to (as discussed in [21]).
Piggybacking on SRTM & DRTM Mechanisms. Static root-
of-trust management (SRTM) primitives allow determining if
the OS is compromised, or is in a pre-specified safe state before
the sensitive operation commences via remote attestation [6].
White listing safe software state is impractical as the number
of possible software stack configurations (e.g., OS versions,
drivers) becomes large with time.

Flicker and TrustVisor, are DRTM based systems which
rely on remote attestation to run pieces of application logic
(PALs) in ring 0 [32], [33]. Piggybacking on these “privileged
execution” mechanisms to achieve execution on unprivileged
ring 3 code is thus feasible, however, it has many limitations.
First, the application needs to be broken up into PALs which
get sufficient time quantas to execute meaningful tasks with-
out pre-emption. Transformation of legacy x86 applications,
though could be automated to a fair extent, is not straight-
forward and requires significant developer effort. Second, the
mechanism requires an intrusive change to the OS — that
is, the OS scheduler needs to be aware of additional kernel

15

Techniques Pvs.S UExec No STCB Comp.

Software-based Sol.
OverShadow [20] X X X
CloudVisor [47] X X X
NoHype [29] X X X
Drawbridge [36] X X X

Hardware-based Sol.
TPM SRTM Mechanism [6] X X X
Flicker [33] X
SMEP, SMAP [5] X X
ARM TrustZones [13] X
XOM, XOMOS [22], [31] X X
IBM SecureBlue++ [38] X X X
Intel SGX [34] X X X

PODARCH X X X X

Pvs.S Separation of provisioning and security
UExec Unprivileged execution of secure applications
No STCB Security does not rely on software TCB
Comp. Compatibility with legacy OSes & apps

Table V: Existing techniques for secure application execution
on untrusted operating systems. Columns 2 - 5 represent
desirable security properties. A X denotes that the technique
demonstrates the property and a blank cell denotes that the
property is not supported.

components, needs to allocate physical memory to be used
by the application, needs various drivers to be aware of PAL
delays, and so on. Third, if the application uses a lot of
sensitive memory pages and is pre-empted, Flicker and TPM-
based sealing mechanisms don’t offer mechanisms to protect
the application’s large memory space across a preemption [11],
[33].
Purely Hardware Solutions. IBM SecureBlue++ [38], In-
tel SGX [34], XOM [31], AISE [39], AEGIS [40], Trust-
Zone [13] propose a trusted physical hardware design to
protect against untrusted OSes. Unlike these, PODARCH is
designed to maintain high compatibility with legacy OS and
applications. HyperWall [41] does not include hypervisor in the
TCB and protects the guest VMs from malicious hypervisor
in the cloud. However, it assumes that the guest VM’s OS
is uncompromised. OASIS [35] adds new instruction to the
CPU to support secure execution of applications, but it relies
on remote verification of the attested code that requires the
client to be online.
Discretionary User-from-Kernel Isolation. New processor
features, such as the SMAP and SMEP instructions on Intel,
have been added to disable access to user-level pages from the
kernel [5]. These mechanisms can help prevent user processes
from exploiting kernel bugs to access payloads stored in user
memory with the OS’s supervisor privilege. However, these
controls are discretionarily set by OSes and can be bypassed
by persistent malware running with the kernel’s authority.

VIII. SCOPE FOR FUTURE WORK

Our current implementation does not support pods to fork
or clone another pod process. Nonetheless, these can be sup-
ported in future with our toolchain. For now, pods can fork to
non-pod processes, which are treated so by default. The present

PODARCH design considers only a single CPU architecture.
Extending PODARCH architecture to a multicore environment
is a promising next step. Also performing a detailed hardware
implementation of PODARCH along with fabrication on chip
can be done in future. Further performance improvement can
be gained by better data structure management or parallelising
the implementation in hardware.

IX. CONCLUSION

We present a new architecture — PODARCH, for secure
execution of legacy x86 applications on untrusted operating
systems. PODARCH is a purely hardware-based mechanism
achieving transparency with existing systems without intrusive
changes to the applications or the OS and requires zero
developer effort to port legacy applications on commodity OS.
Our tools and patches for PODARCH are open source and
available for exploration.

X. ACKNOWLEDGEMENTS

We thank Zhenkai Liang, Hu Hong and Hoon Wei Lim
for their insightful comments on an early presentation of this
work. We also thank Anh Dinh, Xinshu Dong, Zheng Leong
Chua and Yaoqi Jia for their suggestions in preparing the final
version of the report.

REFERENCES

[1] “Bluepill Project,” theinvisiblethings.blogspot.sg/2006/06/
introducing-blue-pill.html.

[2] “GNU CoreUtils,” http://www.gnu.org/software/coreutils/.
[3] “IBM PowerPC,” www-01.ibm.com/chips/techlib/techlib.nsf-/literature/

PowerPC.
[4] “INTEL SGX Programming Reference.” software.intel.com/sites/

default/files/329298-001.pdf.
[5] “Intel Software Developer Manuals,” www.intel.com/content/www/us/

en/processors/architectures-software-developer-manuals.html.
[6] “Intel Trusted Execution Technology: Software Development Guide,”

www.intel.com/content/dam/www/public/us/en/documents/guides/
intel-txt-software-development-guide.pdf.

[7] “PodArch,” https://github.com/shwetasshinde24/PodArch.
[8] “QEMU, Open Source Processor Emulator,” www.qemu.org.
[9] “UltraSPARC,” www.oracle.com/technetwork/systems/coolthreads/

ultrasparc/index.html.
[10] “Universal JTAG,” urjtag.org.
[11] “Trusted Computing Group. Trusted platform module.” July 2007.
[12] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow

Integrity,” in Proceedings of ACM conference on Computer and Com-
munications Security, ser. CCS, 2005.

[13] ARM, “ARM Security Technology Building a Secure System using
TrustZone Technology. ARM Technical White Paper,” 2013.

[14] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with haven,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’14). USENIX Advanced
Computing Systems Association, October 2014.

[15] A. B. Brown and M. I. Seltzer, “Operating System Benchmarking in the
Wake of Lmbench: A Case Study of the Performance of NetBSD on the
Intel x86 Architecture,” in ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, 1997.

theinvisiblethings.blogspot.sg/2006/06/introducing-blue-pill.html
theinvisiblethings.blogspot.sg/2006/06/introducing-blue-pill.html
http://www.gnu.org/software/coreutils/
www-01.ibm.com/chips/techlib/techlib.nsf-/literature/PowerPC
www-01.ibm.com/chips/techlib/techlib.nsf-/literature/PowerPC
software.intel.com/sites/default/files/329298-001.pdf
software.intel.com/sites/default/files/329298-001.pdf
www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://github.com/shwetasshinde24/PodArch
www.qemu.org
www.oracle.com/technetwork/systems/coolthreads/ultrasparc/index.html
www.oracle.com/technetwork/systems/coolthreads/ultrasparc/index.html
urjtag.org

16

[16] A. B. Brown, “A Decompositional Approach to Computer System
Performance Evaluation,” 1997.

[17] D. Champagne and R. Lee, “Scalable architectural support for trusted
software,” in High Performance Computer Architecture (HPCA), 2010.

[18] S. Checkoway and H. Shacham, “Iago attacks: Why the System Call
API is a Bad Untrusted RPC Interface,” in ASPLOS, 2013.

[19] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, and W. Mao,
“Tamper-Resistant Execution in an Untrusted Operating System Using
A Virtual Machine Monitor,” 2007.

[20] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: A
Virtualization-Based Approach to Retrofitting Protection in Commodity
Operating Systems,” 2008.

[21] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic, “SecureME: A
Hardware-software Approach to Full System Security,” in ICS, 2011.

[22] M. H. David Lie, Chandramohan A. Thekkath, “Implementing an
Untrusted Operating System on Trusted Hardware,” in SOSP, 2003.

[23] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra:
A Virtual Machine-based Platform for Trusted Computing,” 2003.

[24] T. Garfinkel, B. Pfaff, and M. Rosenblum, “Ostia: A Delegating
Architecture for Secure System Call Interposition,” in NDSS, 2003.

[25] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Cal, A. J. Feldman, and E. W. Felten, “Lest We Remember: Cold
Boot Attacks on Encryption Keys,” in USENIX Security Symposium,
2008.

[26] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Comput. Archit. News.

[27] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“Inktag: Secure applications on an untrusted operating system,” ser.
ASPLOS, 2013.

[28] E. jin Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing
Remote Untrusted Storage,” ser. NDSS, 2003.

[29] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: Virtualized
Cloud Infrastructure without the Virtualization,” in Proceedings of
International Symposium on Computer Architecture, ser. ISCA, 2010.

[30] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and
J. R. Lorch, “SubVirt: Implementing Malware with Virtual Machines,”
in Proceedings of IEEE Symposium on Security and Privacy, 2006.

[31] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz, “Architectural Support for Copy and Tamper Resistant
Software,” in ASPLOS, 2000.

[32] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“TrustVisor: Efficient TCB Reduction and Attestation,” in Proceedings
of IEEE Symposium on Security and Privacy, ser. SP, 2010.

[33] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,

“Flicker: An Execution Infrastructure for TCB Minimization,” SIGOPS
Oper. Syst. Rev., 2008.

[34] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions and
Software Model for Isolated Execution,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, ser. HASP, 2013.

[35] E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Perrig, and
A. Vasudevan, “Oasis: On achieving a sanctuary for integrity and
secrecy on untrusted platforms,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’13, 2013.

[36] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt,
“Rethinking the Library OS from the Top Down,” ser. ASPLOS, 2011.

[37] D. R. K. Ports and T. Garfinkel, “Towards Application Security on
Untrusted Operating Systems,” ser. HOTSEC, 2008.

[38] Rick Boivie, “SecureBlue++: CPU Support for Secure Execution,”
2012.

[39] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using Address
Independent Seed Encryption and Bonsai Merkle Trees to Make Secure
Processors OS- and Performance-Friendly,” in MICRO, 2007.

[40] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas, “Design
and Implementation of the AEGIS Single-Chip Secure Processor Using
Physical Random Functions,” SIGARCH Comput. Archit. News, 2005.

[41] J. Szefer and R. B. Lee, “Architectural Support for Hypervisor-secure
Virtualization,” in ASPLOS, 2012.

[42] R. Ta-Min, L. Litty, and D. Lie, “Splitting Interfaces: Making Trust
Between Applications and Operating Systems Configurable,” ser. OSDI,
2006.

[43] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porte, “Cooperation
and security isolation of library oses for multi-process applications,”
in EuroSys ’14: Proceedings of the Ninth European Conference on
Computer Systems, 2014.

[44] Z. Wang and R. B. Lee, “New Cache Designs for Thwarting Software
Cache-based Side Channel Attacks,” in ISCA, 2007.

[45] Z. Wang and X. Jiang, “HyperSafe: A Lightweight Approach to Provide
Lifetime Hypervisor Control-Flow Integrity,” in Proceedings of IEEE
Symposium on Security and Privacy, 2010.

[46] J. Yang and K. G. Shin, “Using Hypervisor to Provide Data Secrecy
for User Applications on a Per-page Basis,” in VEE, 2008.

[47] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: Retrofitting
Protection of Virtual Machines in Multi-Tenant Cloud with Nested
Virtualization,” in SOSP, 2011.

[48] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building
Verifiable Trusted Path on Commodity x86 Computers,” in Proceedings
of IEEE Symposium on Security and Privacy, 2012.

	Introduction
	Problem & Our Approach
	Security Objectives
	PodArch Approach
	Differences from Existing Solutions

	PodArch Overview
	Pod Lifecycle
	Security Invariants
	Security and Compatibility Challenges

	PodArch Design
	Security Invariants for Memory Management
	DMA
	Context Switches
	Changes to the Pod Executable
	ISA Extension and Wrappers
	Changes to the Operating System

	Security Analysis
	PodArch CPU Bypass Attacks
	Data Access Attacks
	Code Corruption Attacks
	Vectoring Attacks
	System Service Attacks
	Attacks on PodArch

	Implementation & Evaluation
	Evaluation Goals & Benchmarks
	Results

	Related Work
	Scope for Future Work
	Conclusion
	Acknowledgements
	References

