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Abstract
Trusted execution environments (TEEs) see rising use in
devices from embedded sensors to cloud servers and en-
compass a range of cost, power constraints, and security
threat model choices. On the other hand, each of the current
vendor-specific TEEs makes a fixed set of trade-offs with
little room for customization. We present Keystone—the first
open-source framework for building customized TEEs. Key-
stone uses simple abstractions provided by the hardware
such as memory isolation and a programmable layer under-
neath untrusted components (e.g., OS). We build reusable
TEE core primitives from these abstractions while allowing
platform-specific modifications and flexible feature choices.
We showcase how Keystone-based TEEs run on unmodified
RISC-V hardware and demonstrate the strengths of our de-
sign in terms of security, TCB size, execution of a range of
benchmarks, applications, kernels, and deployment models.

CCS Concepts: • Security and privacy → Trusted com-
puting; Hardware security implementation; Software and ap-
plication security.

Keywords: Trusted Execution Environment, Hardware En-
clave, Secure Enclave, RISC-V,Memory Isolation, Side-Channel
Attack, Hardware Root of Trust, Open Source
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1 Introduction
The last decade has seen the proliferation of trusted exe-
cution environments (TEEs) to protect sensitive code and
data. All major CPU vendors have rolled out their TEEs
(e.g., ARM TrustZone, Intel SGX, and AMD SEV) to provide
a secure execution environment, commonly referred to as
an enclave [1, 51, 64]. TEEs have use-cases in diverse de-
ployment environments ranging from cloud servers, mobile
phones, ISPs, IoT devices, sensors, and hardware tokens.

Unfortunately, each vendor TEE enables only a small por-
tion of the possible design space across threat models, hard-
ware requirements, resource management, porting effort,
and feature compatibility. When a cloud provider or soft-
ware developer chooses a target hardware platform they are
locked into the respective TEE design limitations regardless
of their actual application needs. Constraints breed creativity,
giving rise to significant research effort in working around
these limits. For example, Intel SGXv1 [64] requires statically
sized enclaves, lacks secure I/O and syscall support, and is
vulnerable to significant side-channels [35]. Thus, to exe-
cute arbitrary applications, the systems built on SGXv1 have
inflated the Trusted Computing Base (TCB) and are forced
to implement complex workarounds [18, 22, 31]. As only
Intel can make changes to the inherent design trade-offs in
SGX, users had to wait for changes like dynamic resizing of
enclave virtual memory in SGXv2 [63]. Unsurprisingly, these
and other similar restriction have led to a proliferation of new
TEEs on other ISAs (e.g., OpenSPARC [30], RISC-V [36, 80]).
However, each such redesign requires considerable effort
and only provides another fixed design point.
We advocate that the hardware should provide security

primitives instead of point-wise solutions and in this paper
leverage RISC-V’s primitives to construct highly customiz-
able TEEs.We can draw an analogy with the move from tradi-
tional networking solutions to Software Defined Networking
(SDN), where exposing the packet forwarding primitives to
the software has led to far more novel designs and research.
Such a paradigm shift in TEEs will pave the way for low-cost
use-case customization. It will allow the features and the
security model to be tuned for each hardware platform and
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use-case from a set of common software components, draw-
ing on ideas from modular kernel concepts [40, 60, 78]. This
motivates the need for Customizable TEEs—an abstraction
that allows entities that create the hardware, operate it, and
develop applications to configure and deploy various TEE
designs from the same base. Customizable TEEs promise in-
dependent exploration of gaps/trade-offs in existing designs,
quick prototyping of new feature requirements, a shorter
turn-around time for fixes, adaptation to threat models, and
usage-specific deployment.

For realizing this vision, our first observation is the need
for a highly programmable trusted layer below the untrusted
OS. Second, we must decouple our isolation mechanisms
from decisions of resource management, virtualization, and
trust boundaries. We note that a hypervisor solution results
in a trusted layer with a mix of security and virtualization re-
sponsibilities, thus complicating the most critical component.
Similarly, firmware and micro-code are not programmable to
a degree that satisfies our requirements. These two require-
ments ensure we avoid the mistake of using hardware with
a separation mechanism encumbered with a static bound-
ary between what is trusted and untrusted. Lastly, we draw
inspiration from proliferation of commercial (c.f. Intel SGX,
TrustZone) and non-commercial TEEs (c.f. Sanctum [36],
Komodo [41]) which demonstrate the need for a common,
portable software base adaptable to ever-changing hardware
capabilities and use-case demands.
To this end, we propose Keystone—the first open-source

framework for building customized TEEs. We built Keystone
on unmodified RISC-V using its standard specifications [17]
for physical memory protection (PMP)—a primitive which
allows the programmable machine mode underneath the OS
in RISC-V to specify arbitrary protections on physical mem-
ory regions. We use this machine mode to execute a trusted
security monitor (SM) to provide security boundaries without
needing to perform any resource management. Critically,
each enclave operates in its own isolated physical memory
region and has its own supervisor-mode runtime (RT) compo-
nent to manage the virtual memory of the enclave and more.
With this novel design, any enclave-specific functionality
can be implemented cleanly by its RT while the SM manages
hardware-enforced guarantees. An enclave’s RT implements
only the required functionality, communicates with the SM,
mediates communication with the host via shared memory,
and services the enclave user-mode application (eapp).

Our choice of RISC-V and the logical separation between
SM and RT allows hardware manufacturers, cloud providers,
and application developers to configure various design choices
such as TCB, threat models, workloads, and TEE functional-
ity. Specifically, Keystone’s SM uses hardware primitives to
provide in-built support for TEE guarantees such as secure
boot, memory isolation, and attestation. The RT then pro-
vides functionality modules for system call interfaces, stan-
dard libc support, in-enclave virtual memory management,

self-paging, and more inside the enclave. For strengthening
the security, our SM leverages any available configurable
hardware to compose additional security mechanisms. We
demonstrate the potential of this with a highly configurable
cache controller to, in concert with PMP, transparently de-
fend against physical adversaries and cache side-channels.

We built Keystone, the SM, two RTs (our native RT—Eyrie—
and an off-the-shelf microkernel seL4 [55]), and several mod-
ules which together allow enclave-bound user applications
to selectively configure and use the above features (Figure 1).
We extensively benchmark Keystone on 4 suites with varying
workloads: RV8, IOZone, CoreMark, and Beebs. We show-
case use-case studies where Keystone can be used for secure
machine learning (Torch and FANN frameworks) and crypto-
graphic tasks (libsodium) on embedded devices and cloud
servers. Lastly, we test Keystone on different RISC-V sys-
tems: the HiFive Freedom Unleashed, 3 in-order cores and
1 out-of-order core via FPGA, and a QEMU emulation—all
without modification. Keystone is fully open-source.
Contributions.We make the following contributions:

• Customizable TEEs.We define a new paradigmwherein
the hardware manufacturer, hardware operator, and
the enclave programmer can tailor the TEE design.

• Keystone Framework.We present the first framework to
configure, build, and instantiate customized TEEs. Our
principled way of ensuring modularity in Keystone
allows us to customize the design dimensions of TEE
instances as per the requirements.

• Open-source Implementation.We demonstrate advan-
tages of different Keystone TEE configurations that
are tailored for minimizing the TCB, adapting to threat
models, using hardware features, handling workloads,
or providing rich functionality without any micro-
architectural changes. A typical Keystone instantiated
TEE design adds a total TCB of 12-15 K lines of code
(LoC) to an enclave-bound application, of which the
SM consists of only 1.6 KLoC added by Keystone.

• Benchmarking & Real-world Applications. We evaluate
Keystone on 4 benchmarks: CoreMark, Beebs, and RV8
(< 1% overhead), and IOZone (40%). We demonstrate
real-world machine learning workloads with Torch in
Eyrie (7.35%), FANN (0.36%) with seL4, and a Keystone-
native secure remote computation application. Finally,
we demonstrate defenses against physical adversaries
with memory encryption and cache side-channels.

2 A Common Base for Diverse TEEs
2.1 Background: Commercial TEEs
Current widely-used TEE systems cater to specific and valu-
able use-cases but occupy only a small part of the wide design
space (see Appendix A). Consider the case of a heavy server
workload (databases, ML inference, etc.) running in an un-
trusted cloud environment. One option is an Intel SGX-based
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Figure 1. Keystone system with host processes, untrusted OS, se-
curity monitor, and multiple enclaves (each with runtime and eapp)

solution which has a large software stack [18, 22, 31] to ex-
tend the supported features. On the other hand, an AMD
SEV-based solution isolates a full VM with a large TCB. If
one wants additional defenses against side-channels it adds
further user-space software mechanisms for both cases. If
we consider edge-sensors or IoT applications, the available
solutions are TrustZone based. While more flexible than SGX
or SEV, TrustZone supports only a single hardware-enforced
isolated domain called the Secure World. Any further iso-
lation needs multiplexing between secure applications via
software-based Secure World OS solutions [12]. Thus, irre-
spective of the TEE, developers often compromise their re-
quirements (e.g., resort to a large TCB solution, one isolation
domain) or build their custom design. One such emerging
direction is to use a thin layer of trusted software, similar to
a reference monitor in kernel designs. These designs protect
against a strong adversary and provide better compatibility
while maintaining a low TCB. Several proposals in this area
have demonstrated the feasibility of this approach. Sanc-
tum uses a series of modifications to hardware to construct
user-space enclaves for RISC-V. Komodo takes this concept
further and provides a verified monitor that executes on top
of ARM’s TrustZone. While these systems inherit the limi-
tations of their underlying designs (e.g., hardware changes
or only two security domains in TrustZone), monitor-based
TEEs are a very promising direction.

2.2 Customizable TEEs
We call our model customizable TEEs. It uses a common
software framework to assemble a specialized TEE specific
to the use-case with multiple stakeholders’ inputs. The hard-
ware manufacturer is only required to provide basic primi-
tives. Realizing a specific TEE instance involves the platform
provider’s choice of the hardware interface, the trust model,
and the enclave programmer’s feature requirements. The
entities offload their choices to a framework that composes
the required modules to instantiate a specialized TEE.
A motivation for customizable TEEs is that the threat

model may differ depending on the use case, the application
or the hardware platform. Even on the same platform with
the same SM, different applications may operate under dif-
fering threat models. For this reason, we allow each enclave

to specifiy its configuration of security features. Consider
a simple IoT sensor platform that signs measurements for
authenticity guarantees and an adversary using a cache oc-
cupancy side-channel. In this case, the sensor driver must
be protected and requires runtime memory integrity, but
not memory confidentiality. The signing process requires
both memory integrity and confidentiality. Thus, a possible
configuration would be to have the cryptographic library op-
erate with a private cache partition enclave while the driver
may operate in a basic isolated enclave. An appropriate SM
mechanism (e.g. mailboxes) can ensure authenticated com-
munication between these two enclaves. An adversary using
a cache occupancy side-channel against the driver learns
only the public measurements, and cannot learn anything
about the cryptographic library. By allowing each enclave
to specify and deploy its own defenses, we can optimize our
use of the available resources (in this case, limited private
cache space) and expensive security mechanisms.

The existing commercial TEE systems offer inflexible threat
models linked to the respective hardware platform. Notably,
Intel’s SGX [64] does not support any configuration of its
memory protection systems as would be desirable for use
cases not requiring expensive memory encryption. On the
other hand, while offering some software and hardware cus-
tomization, ARM’s TrustZone provides an inferior substrate
to build a modular TEE. Core to TrustZone’s design is the
concept of only two security domains. A TrustZone TEE im-
plementing multiple enclaves must use the memory manage-
ment unit (MMU) for further isolation. This fundamentally
limits what operations enclaves can be allowed to perform
and limits enclaves to user-mode. This limitation naturally
extends to all TEE systems built using TrustZone as a base
like Komodo. On the hardware side, TrustZone relies on
system-wide bus-address filters (e.g., the TZC-400) to sepa-
rate secure from insecure DRAM partitions, whereas RISC-V
provides per-hardware-thread views of physical memory via
machine-mode and PMP registers. Using RISC-V thus allows
multiple concurrent and potentially multi-threaded enclaves
to access disjoint memory partitions while also opening up
supervisor-mode and the MMU for enclave use. This allows
an enclave to contain either a lightweight or even a full
supervisor-mode OS as we demonstrate.

Keystone requires no changes to CPU cores, memory con-
trollers, etc. A secure hardware platform supporting Key-
stone requires: a device-specific secret key visible only to the
trusted boot process, a hardware source of randomness, and a
trusted boot process. Key provisioning [15] is an orthogonal
problem. For this paper, we assume a simple manufacturer
provisioned key.

2.3 Entities in TEE Lifecycle
We define five logical entities in customizable TEEs:
Hardware manufacturer designs and fabricates RISC-V
hardware including relevant IP for trusted boot.
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Keystone platformprovider purchasesmanufactured hard-
ware; operates the hardware; makes it available for use to
its customers; configures the SM.
Keystone programmer develops Keystone software com-
ponents including SM, RT, and eapps; we refer to the respec-
tive programmers who develop these specific components.
Keystone user chooses a Keystone configuration of RT and
an eapp. They instantiate an enclave which can execute on
hardware provisioned by the Keystone platform provider.
Eapp user interacts with the eapp executing in an enclave
on the TEE instantiated using Keystone.
In real-world deployments, a single entity can perform mul-
tiple roles. For example, consider Acme Corp. hosts their
website on an Apache webserver executing on Bar Corp.
manufactured hardware in a Keystone-based enclave hosted
on Cloud Corp. cloud service. In this scenario, Bar will be the
Hardware manufacturer; Cloud will be a Keystone platform
provider and can be an RT programmer and SM programmer;
Apache developers will be eapp programmer; Acme Corp.
will be Keystone user, and; the person who uses the website
will be the eapp user.

3 Keystone Overview
We designed and built Keystone on RISC-V. RISC-V is an
open ISA with multiple open-source core implementations
[19, 29]. It currently supports up to four privilege modes: U-
mode (user) for user-space processes, S-mode (supervisor) for
the kernel, H-mode (hypervisor) for the hypervisor, and M-
mode (machine) which directly accesses physical resources
(e.g., interrupts, memory, devices). At the time of writing,
H-mode (hypervisor) is not included in the standard specifi-
cation. Keystone will also be able to support hypervisor-level
isolation when H-mode becomes available.

3.1 Design Principles
We design customizable TEEs with maximum degrees of
freedom and minimum effort using the following principles.
Leverage programmable layer and isolation primitives
below the untrusted code.We design a reference monitor
style security monitor (SM) to enforce TEE guarantees on
the platform using four properties of M-mode: (a) it is pro-
grammable by platform providers, (b) it meets our needs for a
minimal highest privilege mode, (c) it controls hardware dele-
gation of the interrupts and exceptions in the system, and (d)
M-mode’s control of RISC-V’s Physical Memory Protection
(PMP) standard [17] enables isolation of memory-mapped
control features at runtime.
Decouple the resourcemanagement and security checks.
The SM enforces security policies with minimal code at the
highest privilege. It has few non-security responsibilities.
This keeps the TCB low and allows it to present clean ab-
stractions. Our S-mode runtime (RT) and U-mode enclave
application (eapp) both reside in enclave address space and
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Figure 2. Keystone End-to-end Overview. ❶ Platform provider
configures the SM. ❷ Keystone compiles and generates the SM boot
image. ❸ Platform provider deploys the SM. ❹ Developer writes
an eapp, configures the enclave. ❺ Keystone builds the binaries,
computes measurements. ❻ Untrusted host binary is deployed to
the machine. ❼ Host deploys the RT, the eapp, and initiates the
enclave creation. ❽ Remote verifier can attest based on known
platform specifications, keys, and SM/enclave measurements.

are isolated from the untrusted OS or other user applications.
The RT manages the lifecycle of the user code executing
in the enclave, manages memory, services syscalls, etc. For
communication with the SM, the RT uses a limited set of API
functions via the RISC-V supervisor binary interface (SBI)
to exit or pause the enclave (Table 1) as well as request SM
operations on behalf of the eapp (e.g., attestation). Each en-
clave instance may choose its own RT which is never shared
with any other enclaves.
Design modular layers. Keystone uses modularity (SM,
RT, eapp) to support a variety of workloads. It frees Key-
stone platform providers and Keystone programmers from
retrofitting their requirements and legacy applications into
an existing TEE design. Each layer is independent, provides
a security-aware abstraction to the layers above it, enforces
guarantees which can be easily checked by the lower layers,
and is compatible with existing notions of privilege.
Allow fine-grained TCB configuration. Keystone can in-
stantiate TEEs with the minimal TCB for given specific use-
cases. The enclave programmer can further optimize the TCB
via RT choice and eapp libraries using existing user/kernel
privilege separation. For example, if the eapp does not need
libc support or dynamic memory management, Keystone
will not include them in the enclave.

3.2 Keystone Enclave Workflow
Figure 2 details the steps from Keystone provisioning to eapp
deployment. The platform provider instantiates a SM with a
proper hardware specification and security extenstions that
bring additional isolation guarantees such as cache parti-
tioning. Independently, the enclave developers use Keystone
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tools and libraries to write eapps and RT with rich features
such as virtual memory management and system calls. The
RT may use available SM SBI call, but they do not change
the isolation guarantees that the SM enforces.

3.3 Writing eapps
Keystone supports 3 ways of writing enclave applications as:
(a) standalone Keystone-native eapps, (b) un-modified RISC-
V binaries with RT support, or (c) partitioned applications
running selected parts in the enclave. Future work will allow
Keystone to operate as a backend for cross-enclave SDKs (e.g.,
OpenEnclave [11], Asylo [67]) to allow for a wide variety of
programming models. In sections 7.4, 7.3 we demonstrate
un-modified RISC-V binaries and a manual partitioning.

3.4 Threat Model
The Keystone framework trusts the PMP specification as
well as the PMP and RISC-V hardware implementation to
be bug-free. The Keystone user trusts the SM only after
verifying if the SMmeasurement is correct, signed by trusted
hardware, and has the expected version. The SM only trusts
the hardware, the host trusts the SM, the RT trusts the SM,
the eapp trusts the SM and the RT.
Keystone can operate under diverse threat models, each

requiring different defense mechanisms. For this reason, we
outline all relevant attackers for Keystone. We allow the
selection of a sub-set of these attackers based on the scenario.
For example, if the user is deploying TEEs in their private
data centers or home appliances, a physical attacker may
not be a realistic threat and Keystone can be configured to
operate without physical adversary protections.
Attacker Models. Keystone protects the confidentiality and
integrity of all enclave code and data at all times after cre-
ation. We define four classes of attackers who aim to com-
promise our security guarantees:
A physical attacker APhy can intercept, modify, or replay
signals that leave the chip package. We assume that the phys-
ical attacker does not affect the components inside the chip
package. APhyC is for confidentiality, APhyI is for integrity.
A software attacker ASW can control host applications, the
untrusted OS, network communications, launch adversarial
enclaves, arbitrarily modify any memory not protected by
the TEE, and add/drop/replay enclave messages.
A side-channel attacker ASC can glean information by ob-
serving interactions between the trusted and the untrusted
components via the cache side channel (ACache ), the timing
side channel (AT ime ) or the controlled channel (ACntr l ).
A denial-of-service attacker ADoS can take down the en-
clave or the host OS. Keystone allows the OS to DoS enclaves
as the OS can refuse services to user applications at any time.
Scope. Keystone currently has no meaningful mechanisms
to protect against speculative execution attacks [27, 56]. Ex-
isting and future defenses against this class of attacks can be

Caller SM SBI Description

OS

create Validate, and measure the enclave
run Start enclave and boot RT
resume Resume enclave execution
destroy Clean & release enclave memory

RT

stop Pause enclave execution
exit Terminate the enclave
attest Get a signed attestation report
random Get secure random values

OS & RT extension* Platform-specific functions

Table 1. The SBI functions the SM provides, *SM can provide addi-
tional functions (e.g., dynamic resizing) depending on the platform.

retrofitted into Keystone [24, 91]. Keystone does not natively
protect enclaves or the SM against timing side-channel at-
tacks. Programmers should use existing software solutions
to mask timing channels [42] and hardware manufactur-
ers can supply timing side-channel resistant hardware [54].
Side-channel attacks with off-chip components (e.g., mem-
ory bus [59]) are also out-of-scope of this paper and they
can be orthogonally mitigated by oblivious memory. The SM
exposes a limited API (i.e., SBI) to the host OS and the en-
clave.We do not provide non-interference guarantees for this
API [41]. Similarly, the RT can optionally perform untrusted
system calls into the host OS. We assume that the RT and the
eapp have sufficient checks in place to detect Iago attacks via
this untrusted interface [31, 73, 82]. We assume that the SM,
RT, and eapp are bug-free. This is a strong assumption but
can be partially achieved with formal verification [41, 68].

4 Keystone Security Monitor
The core of a Keystone TEE is the Security Monitor (SM).
As the SM uses only standard RISC-V features, it is easily
portable to the other RISC-V platforms. In addition, Keystone
provides an easy way of configuring and compiling the SM
depending on the underlying platform. With this design, we
show how Keystone integrates with optional hardware to
provide additional security guarantees such as cache side-
channel defenses without any application changes. By de-
sign, the SM enforces isolation and provides security-critical
features without the burden of high-level functionality like
virtual memory management. This allows for a simple, and
low attack surface, highest-privilege component.

4.1 Memory Isolation
Keystone only requires the RISC-V hardware to provide sim-
ple security primitives, assigns resource management logic
either to the untrusted software or the enclave, and relies
on trusted software executing at the highest privilege (e.g.,
bootloader, SM) to safely validate their decisions.
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Background: RISC-V Physical Memory Protection. Key-
stone uses physical memory protection (PMP), a feature pro-
vided by RISC-V. PMP restricts the physical memory access
of S-mode and U-mode to certain regions defined via PMP
entries (See Figure 3). Each PMP entry controls the U-mode
and S-mode permissions to a customizable region of physi-
cal memory.1 The PMP address registers encode the address
of a contiguous physical region, configuration bits specify
the r-w-x permissions for U/S-mode, and two addressing
mode bits. PMP has three addressing modes to support var-
ious sizes of regions (arbitrary regions and power-of-two
aligned regions). PMP entries are statically prioritized with
the lower-numbered PMP entries taking priority over the
higher-numbered entries. If U- or S-mode attempts to access
a physical address and it does not match any PMP address
range, the hardware does not grant any access permissions.
Enforcing Memory Isolation via the SM. PMP makes Key-
stone memory isolation enforcement flexible in three ways:
(a) multiple discontiguous enclave memory regions can coex-
ist instead of reserving one large memory region shared by
all enclaves, (b) PMP entries can cover regions from 4 bytes to
all of DRAM allowing for arbitrarily sized enclaves, (c) PMP
entries can be reconfigured during execution to dynamically
create new regions or release a region to the OS.

During the SM boot, Keystone configures the first PMP en-
try (highest priority) to cover its own memory region (code,
stack, data such as enclave metadata and keys), disallowing
access to it from U-mode and S-mode. It then configures the
last PMP entry (lowest priority) to cover all memory and
with all permissions enabled to allow the OS default access
to memory not otherwise covered by a PMP entry.
When a host application requests the OS to create an

enclave, the OS finds an appropriate contiguous physical

1Currently processors have up to 16 M-mode configurable PMP entries.

region2 and then calls into the SM. After validating the re-
quest, the SM protects the enclave memory by adding a PMP
entry with all permissions disabled. Since the enclave’s PMP
entry has a higher priority than the OS PMP entry (the last in
Figure 3), the OS and other user processes cannot access the
enclave region. A valid request requires that enclave regions
not overlap with each other or with the SM region.
During control-transfer to an enclave, the SM (for the

current core only): (a) enables PMP permission bits of the
relevant enclave memory region; and (b) removes all OS PMP
entry permissions to protect all other memory from the en-
clave. This allows the enclave to access its own memory and
no other regions. At a CPU context-switch to non-enclave,
the SM disables all permissions for the enclave region and
re-enables the OS PMP entry to allow default access from the
OS. Enclave PMP entries are freed on enclave destruction.

PMP Enforcement Across Cores. Each core has its own
complete set of PMP entries. During enclave creation, PMP
changes must be propagated to all the cores via inter-proce-
ssor interrupts (IPIs). The SM executing on each of the cores
handles these IPIs by removing the access of other cores to
the enclave. During the enclave execution, changes to the
PMP entries (e.g., context switches between the enclave and
the host) are local to the core executing it and need not be
propagated to the other cores. PMP synchronization IPIs are
only sent during enclave creation and destruction.

PMP Management. Each allocated enclave (executing or
not) requires one PMP entry per isolated memory region
it uses. We re-use the OS PMP entry during enclave execu-
tion for allowing access to shared memory. Additional PMP
regions are available to enclaves via SM interfaces and are
used for cases like self-paging as described in Section 5.1.

Naively, Keystone supports N − 2 simultaneously created
enclaves, where N is the number of PMP entries available.
Alternatively, with adjacent allocations by the OS, Keystone
can virtualize the PMP entries at the cost of disallowingmem-
ory reclamation until all latter enclaves are destroyed. Future
SM and RT features that support relocation may allow for
complete virtualization of PMP entries via defragmentation.
Similarly, the proposed RISC-V hypervisor mode (H-mode)
would allow for an additional layer of address translation to
transparently virtualize PMP entries [7].

4.2 Post-creation In-enclave Page Management
Keystone has a different memory management design from
most TEEs (see Figure 4). It uses the OS-generated page ta-
bles for initialization and then delegates virtual-to-physical
memory mapping entirely to the enclave during execution.
Since RISC-V provides per-hardware-thread views of the

2Our kernel driver uses both the Buddy Allocator and the Contiguous
Memory Allocator (CMA) to dynamically allocate enclave memory with
various sizes.
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mappings. (c) Delegates page management to enclave with its own
page table. (d) Hypervisor for page management, 2 page tables.

physical memory via the machine-mode and the PMP reg-
isters, it allows Keystone to have multiple concurrent and
potentially multi-threaded enclaves to access the disjoint
physical memory partitions. With an isolated S-mode inside
the enclave, Keystone can execute its own virtual memory
management which manipulates the enclave-specific page
tables. Page tables are always inside the isolated enclave
memory space. By leaving the memory management to the
enclave we: (a) allow flexible virtual memory management
with several RT modules (see Section 5.1); (b) remove con-
trolled side-channel attacks as the host OS cannot modify or
observe the enclave virtual-to-physical mapping.

4.3 Interrupts and Exceptions
During enclave execution, all machine interrupts trap di-
rectly to the SM. Exceptions (e.g. page faults, etc) may be
safely delegated to the RT via the RISC-V exception delega-
tion register. The RT then handles exceptions as needed to
implement standard kernel abstractions and may forward
other traps to the untrusted OS via the SM. To avoid the en-
clave holding a core to DoS the host the SM sets a machine
timer before it enters the enclave. When the SM regains con-
trol after the timer interrupt triggers, it may return control
to the host OS or request that the enclave cleanly exit.

4.4 Enclave Lifecycle
Keystone enclaves go through three distinct changes during
their lifecycle. At creation, Keystone measures the enclave
memory to ensure that the OS has loaded the enclave binaries
correctly to the physical memory. Keystone uses the initial
virtual memory layout for the measurement because the
physical layout can legitimately vary (within limits) across
different executions. For this, the SM expects the OS to initial-
ize the enclave page tables and allocate physical memory for
the enclave. The SM walks the OS-provided page table and
checks if there are invalid mappings and ensures a unique
virtual-to-physical mapping. The SM then hashes page con-
tents along with the virtual addresses and the configuration
data. At execution, the SM sets PMP entries and transfers
control to the enclave entry point. On an OS initiated de-
struction, the SM clears the enclave memory region before

   Untrusted     SM      Enclave      Enclave (Encrypted)

MEE

LLC

DRAM
(a) ∅ (b) C (c) O (d) O,P,E (e) O,P,EHW

Figure 5.Memory Model for Various TEE Scenarios.∅: baseline,C:
cache partitioning,O: on-chip scratchpad, P: enclave self-paging, E:
software memory encryption EHW : hardware memory encryption.

returning the memory to the OS. SM cleans and frees all the
enclave resources, PMP entries, and enclave metadata.

4.5 TEE Primitives
Keystone supports the following standard primitives.
Secure Boot.AKeystone root-of-trust can be either a tamper-
proof software (e.g., a zeroth-order bootloader) or hardware
(e.g., crypto engine). At each CPU reset, the root-of-trust
(a) measures the SM image, (b) generates a fresh attestation
key from a secure source of randomness, (c) stores it to the
SM private memory, and (d) signs the measurement and
the public key with a hardware-visible secret. These stan-
dard operations can be implemented in many ways [53, 58].
Keystone does not rely on a specific implementation. For
completeness, currently, Keystone simulates secure boot via
a modified first-stage bootloader for all the above steps.
Secure Source of Randomness. Keystone provides a secure
SM SBI call, random, which returns a 64-bit random value.
Keystone uses a hardware source of randomness if available
or can use other well-known options [66] if applicable.
Remote Attestation. The Keystone SM performs the mea-
surement and the attestation based on the provisioned key.
Enclaves may request a signed attestation from the SM dur-
ing runtime. Keystone uses a standard scheme to bind the
attestation with a secure channel construction [41, 58] by
including limited arbitrary data (e.g., Diffie-Hellman key
parameters) in the signed attestation report. Key distribu-
tion [15], revocation [46], attestation services [49], and anony-
mous attestation [26] are orthogonal challenges.
Other Primitives. Keystone can support other primitives, if
required by the TEE: (a) it allows enclaves to access the read-
only hardware-maintained timer registers via the standard
rdcycle instruction; (b) it can provide monotonic counters
by keeping a limited counter state in the SM memory. The
SM can implement trusted timers, rollback defense [35], and
sealed storage [15] with these features.

4.6 Platform-Specific Extensions
Keystone can leverage additional security and functionality
features exposed by the hardware to provide stronger se-
curity guarantees and/or additional features to the enclave
at the cost of various trade-offs. We demonstrate several
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examples of customizing the SM for a specific platform so
that it can defend the enclave against a physical attacker
or cache side-channel attacks. We use the HiFive Freedom
Unleashed [9] RISC-V dev board containing a Rocket-based
quad-core SoC chip (FU540) with a proprietary L2 controller.
Secure On-chip Memory. To protect the enclaves against a
physical attacker who has access to the DRAM, we imple-
mented an on-chip memory extension (Figure 5(c)). It allows
the enclave to execute without the code or the data leaving
the chip package. On the FU540, we dynamically instanti-
ate a scratchpad memory of up to 2MB via the L2 memory
controller to generate a usable on-chip memory region. The
scratchpad is then allocated exclusively to the requesting en-
clave for it’s entire lifetime. An enclave requesting to run in
the on-chip memory loads nearly identically to the standard
procedure with the following changes: (a) the host loads the
enclave to the OS allocated memory region with modified
initial page tables referencing the final scratchpad address;
and (b) the SM copies the standard enclave memory region
into the new scratchpad region before the measurement. Any
context switch to the enclave now results in an execution
in the scratchpad memory. This uses only our basic enclave
life-cycle hooks for the platform-specific features and does
not require further modification of the SM. The only other
change required was a modification of the untrusted enclave
loading process to make it aware of the physical address
region that the scratchpad occupies. No modifications to the
Eyrie RT or the eapps are required.
Cache Partitioning. Enclaves are vulnerable to cache side-
channel attacks from the untrusted OS and other applications
via a shared cache. To this end, we implement a cache parti-
tioning scheme using two hardware capabilities: (a) the L2
cache controller’s waymasking primitive similar to Intel’s
CAT [70]; (b) PMP to way-partition the L2 cache transpar-
ently to the OS and the enclaves. The resulting SM enforces
effective non-interference between the partitioned domains
(Figure 5(b)). Upon a context switch to the enclave, the cache
lines in the partition are flushed. During the enclave execu-
tion, only the cache lines from the enclave physical memory
are in the partition and are thus protected by PMP. The ad-
versary cannot insert cache lines in this partition during the
enclave execution due to the line replacement way-masking
mechanism. As a net effect, adversary (ACache ) gains no
information about the evictions, the resident lines, or the
residency size of the enclave’s cache. Ways are partitioned at
runtime and are available to the host whenever the enclave
is not executing even if paused.
Dynamic Resizing. Statically pre-defined maximum en-
clave size and subsequent static physical or virtual memory
pre-allocations: (a) prevent the enclave from scaling dynami-
cally based on workload, (b) complicates porting applications
to eapps. To this end, Keystone allows the SM to dynamically
change the physical memory boundaries of the enclave. The

Eyrie RT may request that the OS make an extend SBI call
to add contiguous physical pages to the enclave memory
region. If the OS succeeds in allocating, the SM increases
the enclave’s size by extending the relevant PMP entries and
notifies the RT, which then uses the free memory module to
manage the new physical pages (see Section 5.1).

5 Keystone Modular Runtime
As the SM physically isolates each of the enclaves, we can
safely allow the enclave to run private S-mode code (i.e.,
the RT). This enables modular system-level abstraction for
eapps (e.g., virtual memory management). Although the RT
is similar in functionality to a kernel inside an enclave, it does
not require most kernel functionality. We built a modular
exemplar RT—Eyrie—to allow enclave developers the ability
to include only necessary functionality and reduce the TCB.
Given the supervisor capability, we can cleanly imple-

ment selected kernel functionality without modifying user
applications. The additional privilege layer allows for further
defensive design, such as only allowing the RT access to the
shared memory buffer. Moreover, it enables easy porting of
a full-fledged off-the-shelf microkernel such as seL4 in an
enclave. We introduce key Keystone RT modules and show
how they support various workloads with small TCB.

5.1 Enclave Memory Management Modules
Each enclave can run both S-mode and U-mode code. Since
they have the privileges to manage their own memory, they
need not cross the host-enclave isolation boundary. By de-
fault, Keystone enclaves occupy a fixed contiguous physical
memory allocated by the OS with a statically-mapped virtual
address space at load time.While suitable for some embedded
applications, it limits the memory usage of most legacy ap-
plications. To this end, we describe several optional modules
to enable flexible enclave memory management.
Free memory.We built a module that allows the Eyrie RT to
perform page table management, after the enclave reserves
unmapped physical memory. Thus, the page mappings need
not be pre-defined at creation time. The unmapped (hence,
free) memory region is not included in the enclave mea-
surement and is zeroed before beginning the eapp execution.
The free-memory module is required for other more complex
memory modules.
In-Enclave Self Paging. We implemented a generic in-enc-
lave page swapping module for the Eyrie RT. It handles the
enclave page-faults and uses a generic page backing-store
that manages the evicted page storage and retrieval. Our
module uses a simple random eapp-only page eviction pol-
icy. It works in conjunction with the free memory module for
virtual memory management in the Eyrie RT. Put together,
they help to alleviate the tight memory restrictions an en-
clave may have due to the limited DRAM or the on-chip
memory size [71–73].
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Protecting the Page Content Leaving the Enclave.When
the enclave handles its own page fault, it may attempt to
evict the pages out of the secure physical memory (either
an on-chip memory or the protected portion of the DRAM).
When these pages have to be copied out, their content needs
to be protected. Thus, as part of the in-enclave page manage-
ment, we implement a backing-store layer that can include
page encryption and integrity protection to allow for the se-
cure content to be paged out to the insecure storage (DRAM
regions or disk). The protection can be done either in the
software as a part of the Keystone RT (Figure 5(d)) or by a
dedicated trusted hardware unit—a memory encryption en-
gine (MEE) [44]—with the SM’s on-chip memory capability
(Figure 5). Admittedly, this incurs significant design chal-
lenges in efficiently storing the metadata and performance
optimizations. The amount of available on-chip memory for
integrity data storage will cap the total possible size of the
enclave. Keystone design is agnostic to the specific integrity
schemes and can reuse the existing mechanisms [65, 79].

5.2 Functionality Modules
Next, we demonstrate various functionality modules in Eyrie.

EdgeCall Interface.The eapp cannot access the non-enclave
memory in Keystone. If it needs to read/write the data outside
the enclave, the Eyrie RT performs edge calls on its behalf.
Our edge call, which is functionally similar to RPC, consists
of an index to a function implemented in the untrusted host
application and the parameters to be passed to the function.
Eyrie tunnels such a call safely to the untrusted host, copies
the return values of the function back to the enclave, and
sends them to the eapp. The copying mechanism requires
Eyrie to have access to a buffer shared with the host. To
enable this: (a) the OS allocates a shared buffer in the host
memory space and passes the address to the SM at enclave
creation; (b) the SM passes the address to the enclave so the
RT may access this memory; (c) the SM uses a separate PMP
entry to enable OS access to this shared buffer. All the edge
calls have to pass through the Eyrie RT as the eapp does
not have access to the shared memory virtual mappings.
This module can be used to add support for syscalls, IPC,
enclave-enclave communication, and so on. As the current
edge interface is a straight-forward shared memory region,
it can easily to use alternative methods for dispatching calls
such as mailboxes or HotCalls [89].

We allow the proxying of syscalls from the eapp to the host
application by re-using the edge call interface. The user host
application then invokes the syscall on an untrusted OS on
behalf of the eapp, collects the return values, and forwards
them to the eapp. Keystone can utilize existing defenses
to prevent Iago attacks [32] via this interface [31, 73, 82].
Keystone resolves appropriate calls as in-enclave syscalls
(e.g., mmap, brk, getrandom). Such calls are handled in Eyrie

and invoke SM interfaces as needed (e.g. getrandom) before
returning to the eapp.

Multi-threading. We run multi-threaded eapps by delegat-
ing the thread management to the runtime. We do not sup-
port parallel multi-core enclave execution yet, but this can
be implemented by allowing the SM to invoke enclave exe-
cution multiple times in different cores.

6 Security Analysis
We argue the security of the enclave, the OS, and the SM
based on the threat model outlined in Section 3.4.

6.1 Protection of the Enclave
Keystone attestation ensures that anymodification of the SM,
RT, and the eapp is visible while creating the enclave. During
the enclave execution, any direct attempt by anASW to access
the enclave memory (cached or uncached) is defeated by
PMP. All enclave data structures can only be modified by
the enclave or the SM, both are isolated from direct access.
Subtle attacks such as controlled side channels (ACntr l ) are
not possible in Keystone as enclaves have dedicated page
management and in-enclave page tables. This ensures that
any enclave executing with any Keystone instantiated TEE
is always protected against the above attacks.

Mapping Attacks. The RT is trusted by the eapp, does not
intentionally create malicious virtual to physical address
mappings [45] and ensures that the mappings are valid. The
RT initializes the page tables either during the enclave cre-
ation or loads the pre-allocated (and SM validated) static
mappings. During the enclave execution, the RT ensures
that the layout is not corrupted while updating the map-
pings (e.g., via mmap). When the enclave gets new empty
pages, say via the dynamic memory resizing, the RT checks
if they are safe to use before mapping them to the enclave.
Similarly, if the enclave is removing any pages, the RT scrubs
their content before returning them to the OS.

Syscall Tampering Attacks. If the eapp and the RT invoke
untrusted functions implemented in the host process and/or
execute the OS syscalls, they are susceptible to Iago attacks
and system call tampering attacks [32, 77]. Keystone can re-
use the existing shielding systems [18, 31, 82] as RT modules
to defend the enclave against these attacks.

Side-channelAttacks.Keystone thwarts cache side-channel
attacks (Section 4.6). Enclaves do not share any state with
the host OS or the user application and hence are not ex-
posed to controlled channel attacks. The SM performs a clean
context switch and flushes the enclave state (e.g., TLB). The
enclave can defend itself against explicit or implicit infor-
mation leakage via the SM or the edge call API with known
defenses [83, 84]. Only the SM can see other enclave events
(e.g., interrupts, faults), these are not visible to the host OS.
Timing attacks against the eapp are out of scope.
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6.2 Protecting the Host OS
Keystone RTs execute at the same privilege level as the host
OS, so an ASW in our case is stronger than in SGX. We
ensure that the host OS is not susceptible to new attacks
from the enclave because the enclave cannot: (a) reference
any memory outside its allocated region due to the SM PMP-
enforced isolation; (b) modify page tables belonging to the
host user-level application or the host OS; (c) pollute the host
state because the SM performs a complete context switch
(TLB, registers, L1-cache, etc.) when switching between an
enclave and the OS; (d) DoS a core as the enclave will be
interrupted by the machine timer set by the SM such that
the SM can return the control to the OS.

6.3 Protection of the SM
The SM naturally distrusts all the lower-privilege software
components (eapps, RTs, host OS, etc.). It is protected from
an ASW because all the SM memory is isolated using PMP
and is inaccessible to any enclave or the host OS. The SM SBI
is another potential avenue of attack. Keystone’s SM presents
a narrow, well-defined SBI to the S-mode code. It does not
do complex resource management and is small enough to be
formally verified [41, 68]. The SM is only a reference monitor,
it does not require scheduled execution time, so an ADoS is
not a concern. The SM can defend against an ACache and an
AT ime with known techniques [42, 54].

6.4 Protection Against Physical Attackers
Keystone can protect against a physical adversary via plat-
form features and a proposed modification to the bootloader.
Similar to Chen et al. [33], the SM uses a scratchpad to store
the decrypted code and data, while the supervisor mode com-
ponent (Eyrie modules) handles paging enclave content to
DRAM when the scratchpad becomes full.

The enclave itself is protected by the combination of the
on-chip memory and the RT’s paging module, with encryp-
tion and integrity protection on the pages leaving the on-chip
memory. The page backing-store is a standard PMP protected
physical memory region now containing only the encrypted
pages, similar in concept to the SGX EPC. This fully guar-
antees the confidentiality and integrity of the enclave code
and data from an attacker with control of DRAM.

The SM should be executed entirely from the on-chip
memory. The SM is statically sized and has a relatively small
in-memory footprint (< 150Kb). On the FU540, this would
involve repurposing a portion of the L2 loosely-integrated
memory (LIM) via a modified trusted bootloader.

With these techniques in place, content outside of the chip
package is either untrusted (host, OS, etc.) or is encrypted and
integrity protected (e.g., swapped enclave pages). Keystone
accomplishes this with no application modifications.

Platform Core Cache Size Latency # of TLB
(KB) (cycles) Entries

# Type L1-I/D L2 L1 L2 L1 L2

Rocket-S 1 in-order 8/8 512 2 24 8 128
Rocket 1 in-order 16/16 512 2 24 32 1024
BOOM 1 OoO 32/32 2048 4 24 32 1024
FU540 4 in-order 32/32 2048 2 12-15* 32 128

Table 2.Hardware specification for each platform. L2 cache latency
in FU540 (*) is based on estimation.

7 Evaluation
We aim to answer the following questions in our evaluation:
(RQ1) Modularity. Is the Keystone framework viable in

different configurations for real applications?
(RQ2) TCB. What is the TCB of a Keystone-instantiated

TEE in various deployment modes?
(RQ3) Performance. How much overhead do simple Key-

stone TEEs add to eapp execution time?
(RQ4) Real-world Applications. Does Keystone provide

expressiveness with minimal developer efforts for
eapps?

7.1 Implementation & Experimental Setup
We implemented our SM on top of the Berkeley Boot Loader
(bbl) [13]. It supports M-mode trap handling, boot, and other
features. We implemented the initialization of the SM at boot
as well as the SBI specified in Table 1. Platform-specific ex-
tensions have been implemented with hooks in SBI functions.
We simulated unavailable hardware primitives such as the
random number generator and the root of trust. All modules
in Sections 4 and 5 are available as compile-time options.

We implemented the Eyrie RT from scratch in C. Memory
encryption is done via software AES-128 [2] and integrity
protection is partially implemented. We ported the seL4
microkernel [55] to Keystone by modifying 290 LoC for
boot, memory initialization, and interrupt handling. There
is no inherent restriction to these two RTs, and we expect to
add further options.

Our host user-land interface for interactions with the en-
claves is provided via a Linux kernel driver that creates
a device endpoint (/dev/Keystone). The untrusted host OS
(i.e., Linux) launches and manages the enclaves via SBI on
behalf of the user, and also manages the enclave ownership
and enclave-related OS resources.
We provide several libraries (edge-calls, host-side syscall

endpoints, attestation, etc.) in C and C++ for the host, the
eapp, and interaction with the driver-provided Linux de-
vice. Our provided tools generate the enclave measurements
(hashes) without requiring RISC-V hardware, customize the
Eyrie RT, and package the host application, eapps, and RT
into a single binary. We have a complete top-level build so-
lution to generate a bootable Linux image (based on the
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SM Component LoC Runtime Component LoC

Base 1100 — 1800
Edge-call Handling 30 — 300
Dynamic Memory 70 — 100

Memory Isolation 500 libc Environment 50
Cache Partitioning 300 In-enclave Paging 300
Secure Boot 170 Syscalls 450
On-chip Memory 50 Free Memory 300

IO Syscall Proxying 300

Table 3. TCB Breakdowns for the Eyrie RT and SM features in LoC.

tooling for the HiFive Freedom Unleashed) for QEMU, FPGA
softcores, and the HiFive containing our SM, the driver, and
the enclave binaries.

We used four different platforms for our experiments; the
HiFive Freedom Unleashed [9] with a closed-source FU540
(at 1GHz), and three open-source RISC-V processors: small
Rocket (Rocket-S), default Rocket [19], and Berkeley Out-of-
order Machine (BOOM) [29] (See Table 2). We instantiate the
open-source processors on cloud FPGAs using FireSim [52]
which simulates the cores at 1GHz. The host OS is build-
root Linux (kernel 4.15). All performance evaluation was
performed on the HiFive and the data is averaged over 10
runs unless otherwise specified.

7.2 Modularity & Support
We outline the qualitative measurement of Keystone flex-
ibility in extending features, reducing TCB, and using the
platform features. Table 3 shows the TCB breakdown of var-
ious components (required and optional) for the SM and
Eyrie RT. Most of the modifications (e.g., additional edge-
call features) require no changes to the SM, and the eapp
programmer may enable them as needed. Future additions
(e.g., ports of interface shields) may be implemented exclu-
sively in the RT.We also add support for a new RT by porting
seL4 to Keystone and use it to execute various eapps (See
Section 7.4). Keystone passes all the tests in seL4 suite and
incurs less than 1% overhead on average over all test cases.
The advantage of an easily modifiable SM layer is noticeable
when features require interaction with the core TEE prim-
itives like memory isolation. The SM features were able to
take advantage of the L2 cache controller on the FU540 to
offer additional security protections (cache-partitioning and
on-chip isolation) without changes to the RT or eapp.
TCB Breakdown. Keystone comprises of the M-mode com-
ponents (bbl and SM), the RT, the untrusted host application,
the eapp, and the helper libraries, of which only a fraction
is in the TCB. The M-mode component is 10.7 KLoC: a
cryptographic library (4 KLoC), pre-existing trap handling,
boot, and utilities (4.7 KLoC), the baseline SM (1.6 KLoC),
and platform-specific code for FU540 (400 LoC). A minimum
Eyrie RT is 1.8 KLoC, with modules adding further code as
shown in Table 3 up to amaximumEyrie RT TCB of 3.6KLoC.
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Figure 6. Breakdown of operations during the enclave life-cycle.
(a) shows enclave validation and hashing duration, and (b) shows
the breakdown of other operations. (b) does not include duration of
size-dependent operations such as measurement in create (Shown
in (a)) and memory cleaning in destroy (4K-11K cycles/page).

The current maximum TCB for an eapp running on our SM
and Eyrie RT is thus a total of 15 KLoC. TCB calculations
were made using cloc [8] and unifdef [14].

7.3 Benchmarks
We use 4 standard benchmark suites with a mix of CPU,
memory, and file I/O for system-wide analysis: Beebs, Core-
Mark, RV8, and IOZone. We report the overheads of the
cache partitioning and physical attacker protection with RV8
as an example of Keystone trade-offs. In all the graphs, ‘other’
refers to the lifecycle costs for enclave creation, destruction,
etc. All benchmarks are run as unmodified RISC-V binaries
using an Eyrie runtime with relevant modules as needed.
CommonOperations. Figure 6 shows the breakdown of var-
ious enclave operations. Initial validation and measurement
dominate the startup with 2M and 7M cycles/page for FU540
and Rocket-S due to an unoptimized software implementa-
tion of SHA-3 [4]. The remaining enclave creation time totals
20k-30k cycles. Similarly, the attestation is dominated by the
ed25519 [6] signing software implementation (not shown
in the graph, 0.7M-1.6M cycles). These are both one-time
costs per-enclave and can be substantially optimized in soft-
ware or hardware. The most common SM operation, context
switches, currently take between 1.8K(FU540)-2.6K(Rocket-
S) cycles depending on the platform. Notably, creation and
destruction of enclaves takes long on the FU540 (4-core) due
to the multi-core PMP synchronization.
Standard Benchmarks as Unmodified eapp Binaries.
Beebs, CoreMark, and RV8. As expected, Keystone incurs
no meaningful overheads (±0.7%, excluding enclave creation
and destruction) for pure CPU and memory benchmarks.
IOZone. All the target files are located on the untrusted host
and we tunnel the I/O syscalls to the host application. Fig-
ure 7 shows the throughput plots of common file-content ac-
cess patterns. Keystone experiences expected high through-
put loss for both write (avg. 36.2%) and read (avg. 40.9.%).
Three factors contribute to the overhead: (a) all the data
crossing the privilege boundary is copied an additional time
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Figure 8. Full-execution time comparison for RV8. Each bar shows
the duration of the application (user or eapp), and the other over-
heads (other). Keystone (keyst) and Keystone with cache parti-
tioning (keyst-cache) compared to native execution (base).

via the untrusted buffer, (b) each call requires the RT to go
through the edge call interface, incurring a constant over-
head, and (c) the untrusted buffer contends in the cache with
the file buffers, incurring an additional throughput loss on re-
write (avg. 38.0%), re-read (avg. 41.3%), and record re-write
(avg. 55.1%) operations. Since (b) is a fixed cost per system
call, it increases the overhead for the smaller record sizes.
Cache Partitioning. The mix of pure-CPU and large work-
ing-set benchmarks in RV8 are ideal to evaluate the impact
of caceh partitioning. We granted 8 of the 16 ways in the L2
cache to the enclave during execution (see Figure 8). Small
working-set tests show low overheads from cache flush on
context switches whereas large working-set tests (primes,
miniz, aes) show up to 128% overhead due to a smaller effec-
tive cache. Enclave initialization latency is unaffected.
Physical Attacker Protections.We ran the RV8 suite with
on-chip execution, enclave self-paging, page encryption, and
a DRAM backing page store (Table 4). A few eapps (sha512,
dhrystone), which fit in the 1MB on-chip memory, incur no
overhead and are protected even from APhy . For the larger
working-set-size eapps, the paging overhead increases de-
pending on the memory access pattern. For example, primes

Overhead (%) # of Page
Benchmark ∅ C O, P O, P, E Faults
primes -0.9 40.5 65475.5 * 66 × 106
miniz 0.1 128.5 80.2 615.5 18341
aes -1.1 66.3 1471.0 4552.7 59716
bigint -0.1 1.6 0.4 12.0 168
qsort -2.8 -1.3 12446.3 26832.3 285147
sha512 -0.1 0.3 -0.1 -0.2 0
norx 0.1 0.9 2590.1 7966.4 58834
dhrystone -0.2 0.3 -0.2 0.2 0

Table 4. RV8 Overhead for different TEE design instances. ∅: base-
line, C: cache partitioning, O: on-chip scratch pad execution (1MB),
P: enclave self-paging, E: software-based memory encryption. *:
does not complete in ~10 hrs.

incurs the largest amount of page faults because it allocates
and randomly accesses a 4MB buffer causing a page fault
for almost every memory access. Software-based memory
encryption adds 2 − 4× more overhead to page faults. These
overheads can be alleviated by the Keystone framework if
a larger on-chip memory or dedicated hardware memory
encryption engine is available as we discussed in Section 5.

7.4 Case Studies
We demonstrate how Keystone can be adapted for a varied
set of devices, workloads, and application complexities with
three case-studies: (a) machine learning workloads for the
client and server-side usage, (b) machine learning for var-
ied RTs, (c) a small secure computation application written
natively for Keystone. The evaluation for these case-studies
was performed on the HiFive board. We used the unmodified
application code logic, hard-coded all the configurations and
arguments for simplicity, and statically linked the binaries
against glibc or musl libc supported by the Eyrie RT. We
ported the widely used cryptographic library libsodium to
both Eyrie and seL4 RT trivially.
Case-study 1: SecureML Inference with Torch and Eyrie.
We ran nine Torch-based models of increasing sizes with
Eyrie on the Imagenet dataset [39] (see Table 5). They com-
prise 15.7 and 15.4KLoC of TH [3] and THNN [5] libraries
from Torch compiled with musl libc. Each model has an ad-
ditional 230 to 13.4KLoC ofmodel-specific inference code [88].
We performed two sets of experiments: (a) execute the model
inference code with static maximum enclave size; (b) with dy-
namic resizing support to allow the enclave size to increase
on-demand. Figure 9 shows the performance overheads for
both configurations and non-enclaved execution baseline.
Initialization Overhead is noticeably high for both static
size and dynamic resizing. It is proportional to the eapp bi-
nary size due to enclave page hashing. Dynamic resizing
reduces the initialization latency by 2.9% on average as the
RT does not map free memory during enclave creation.
EappExecutionOverheadwas between−3.12%(LeNet) and
7.35%(Densenet) for all the models with both static size and
dynamic resizing. The causes of this are: (a) Keystone loads



Keystone EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Model
# of

Layers
# of

Param
App
LOC

Binary
Size

Memory
Usage

Wideresnet 93 36.5M 1625 140MB 384MB
Resnext29 102 34.5M 1910 123MB 394MB
Inceptionv3 313 27.2M 5359 92MB 475MB
Resnet50 176 25.6M 3094 98MB 424MB
Densenet 910 8.1M 13399 32MB 570MB
VGG19 55 20.0M 1088 77MB 165MB
Resnet110 552 1.7M 9528 7MB 87MB
Squeezenet 65 1.2M 914 5MB 52MB
LeNet 12 62K 230 0.4MB 2MB

Table 5.Torchmodel specification, workload characteristics, binary
object size, and total enclave memory usage.
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Figure 9. Inferencing time for various Torch models. Each bar
consists of the duration of the application (user or eapp), and the
other overheads (other). Keystone (keyst) and Keystone with the
dynamic resizing (keyst-dyn) compared to native execution in
(base).

the entire binary in physical memory before it beings eapp ex-
ecution, precluding any page faults for zero-fill-on-demand
or similar behavior, so smaller sized networks like LeNet
execute faster in Keystone and (b) the overhead is primarily
proportional to the number of layers in the network, as more
layers results in more memory allocations and increase the
number of mmap and brk syscalls. We used a small hand-
coded test to verify that Eyrie RT’s custom mmap is slower
than the baseline kernel and incurs overheads. Densenet,
which has the maximum number of layers (910), thus suffers
from larger performance degradation. In summary, for long-
running eapps, Keystone incurs a fixed one-time startup cost
and the dynamic resizing is indeed useful for larger eapps.
Case-study 2: Secure ML with FANN and seL4. Keystone
can be used for small devices such as IoT sensors and cameras
to train models locally as well as flag events with model
inference. We ran FANN, a minimal (8KLoC C/C++) eapp
for embedded devices with the seL4 RT to train and test a
simple XOR network. The end-to-end execution overhead is
0.36% over running in seL4 without Keystone.
Case-study 3: Secure Remote Computation. We imple-
mented a secure server eapp (and remote client) to count
words in an input message using the Eyrie and baseline SM. It
performs attestation, uses libsodium to bind a secure chan-
nel to the attestation report, then polls the host for encrypted
messages using edge-calls, processes them inside the enclave,

and returns an encrypted reply to be sent to the client. The
eapp has secure channel code (60 LoC), the edge-wrapping
interface (45 LoC), and other logic (60 LoC). The host is 270
LoC and the remote client is 280 LoC. Keystone takes 45K cy-
cles for a round-trip with an empty message, secure channel,
and message passing overheads. It takes 47K cycles between
the host getting a message and the enclave notifying the host
to send a reply.

8 Related Work
Here, we survey TEEs and design trade-offs that have been
explored in existing works.
TEE Architectures & Extensions. Three TEEs are closely
related to Keystone: (a) Intel Software Guard Extension (SGX)
executes user-level code in an isolated virtual address space
backed by encrypted RAM pages [64]; (b) ARM TrustZone
divides the memory into two worlds (i.e., normal vs. secure)
to run applications in protected memory [1]; and (c) Sanctum
uses a machine-mode SM, the memory management unit
(MMU), and cache partitioning to isolate enclave memory
and prevent controlled-channel and cache side-channel at-
tacks [36]. Several other TEEs explore design at layers such
as hypervisors [34, 45, 61], physical memory [30, 57, 62], vir-
tual memory [25, 37, 80], and process isolation [38, 76, 86, 87].
Interested readers can refer to Appendix A for a summary
of TEE design choices.
Re-purposing Existing TEEs for Modularity. One way to
meet Keystone’s design goal of customizable TEEs is to reuse
the TEE solutions that are available on commodity CPUs. For
each TEE, it is possible to enable a subset of programming
constructs (e.g., threading, dynamic loading of binaries) by
including a software management component inside the en-
clave [12, 22, 31]. Alternatively, adding hardware extensions
which are specifically designed and implemented for adding
TEE capabilities requires lot of efforts [36, 71]. Another ap-
proach is to simulate the programmable layer, say with a
trusted hypervisor layer, which then executes an untrusted
OS, but potentially inflates the TCB.
Differences from Trusted Hypervisor Keystone executes
the enclave logic in the supervisor mode (RT) and the user
mode (eapp), while the machine mode code (SM) merely
checks and enforces isolation boundaries. Although Key-
stone may seem similar to a trusted hypervisor, it does not
implement or perform any resource management, virtual-
ization, or scheduling in the SM. It merely checks if the
untrusted OS and the enclave (RT, eapp) are managing the
shared resources correctly. Thus, Keystone SM is more anal-
ogous to a reference monitor [16, 78].
TEE Support. Several works enhance existing TEEs. At the
SM layer they optimize program-critical tasks [21, 36, 80].
At the hypervisor layer they add support for multiplexing
the secure isolation enforced by hardware or use nested
virtualization for isolation [23, 37, 47]. At the RT layer, they
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target portability, functionality, security [11, 12, 18, 22, 31, 67,
81]. At the eapp layer they reduce the developer efforts [20].
Although these systems are a fixed configuration in the TEE
design space, they provide valuable lessons for Keystone
features and optimization.
Enhancing the Security of TEEs. Better and secure TEE
design has been a long-standing goal, with advocacy for
security-by-design [48, 75]. We point out that Keystone is
not vulnerable to a large class of side-channel attacks [28, 90]
by design, while speculative execution attacks [27, 56] are
limited to out-of-order RISC-V cores (e.g., BOOM) and do not
affect most SOC implementations (e.g., Rocket). Keystone
can re-use known cache side-channel defenses [24, 54] as
we demonstrated in Section 4.6. Lastly, Keystone can benefit
from various RISC-V proposals underway to secure IO opera-
tions with PMP [74]. Thus, Keystone either eliminates classes
of attacks or allows integration with existing techniques.
Formally Verified Hardware & Software. TEE-like guar-
antees can be achieved orthogonally by a hardware and soft-
ware stack which is formally verified as resistant against all
classes of attacks that TEEs prevent. A careful and ground-
up design with verified components [43, 55, 69] may provide
stronger guarantees and Keystone can help explore designs
which combine these with hardware protection [41, 85].
Resemblance with traditional kernel designs.Despite be-
ing designed for the TEE threat model, Keystone borrows
and builds on well-known principles from a long line of work
in OS design. Specifically, our choice of separating isolation
(SM) and functionality (RT) has been explored mainly in
micro-kernels [60]. Further, like many other works, our SM
is inspired by the concept of reference monitors [16, 78].
Lastly, the modularity of abstraction between the host OS,
the RT and eapp is similar to exokernels [40].

9 Conclusion
We present Keystone, the first framework for customizable
TEEs. With our modular design, we showcase the use of Key-
stone for several standard benchmarks and applications on
illustrative RTs and various deployment platforms. Keystone
serves as a framework for both TEE research and future
deployment of novel TEE designs.
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Availability
The Keystone implementation for all platforms (QEMU, Fire-
Sim, and HiFive Freedom Unleashed) is available at https:
//github.com/keystone-enclave/keystone. The modified seL4
runtime is available at https://github.com/keystone-enclave/
keystone-seL4. General information and documentation is
available at https://keystone-enclave.org.

A Trade-offs in existing TEEs
Table 6 shows the trade-offs in the existing TEE or TEE-based
systems.
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Table 6. Trade-offs in existing TEEs/extensions. , , : best to worst
respectively. C3-6: resilience to software adversary, hardware adversary,
side-channel adversary, controlled-channel adversary respectively. indicates
complete protection; confidentiality only; no protection.C7: zero; thousands
LoC; millions LoC. C8: zero; non-zero hardware; micro-architectural modi-
fications. C9: enclave self resource management; partial; no flexibility. C10:
range of apps supported are maximum; specific class; only written from
scratch. C11: expressiveness includes forking, multi-threading, syscalls,
shared memory; partial; none of these. C12: dev-effort for porting is un-
modified binaries; compiling and/or configuration files; re-writing.
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