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Abstract—Blockchain technology offers decentralized secu-
rity but fails to ensure data confidentiality due to its in-
herent data replication across all network nodes. To address
these confidentiality challenges, integrating blockchains with
Trusted Execution Environments (TEEs), such as Intel SGX,
offers a viable solution. This approach, by encrypting all
data outside the SGX enclave and making them unrecog-
nizable to untrusted network nodes, ensures secure process-
ing of data and computations within TEEs. Fabric Private
Chaincode (FPC), an enhancement of Hyperledger Fabric,
demonstrates this integration by securing smart contracts in
enclaves, thereby enhancing confidentiality. However, FPC’s
reliance on states stored on the blockchain introduces vulner-
abilities, especially to rollback attacks. This work provides
a detailed analysis of rollback attacks in FPC, evaluates
existing protection mechanisms, and proposes a solution: a
Merkle Tree approach implemented in an FPC application
named Secret Keeper. Through experimental validation, this
solution shows significant security enhancements against
rollback attacks within FPC contexts.

1. Introduction

Blockchain technology, a decentralized ledger sys-
tem, has revolutionized how transactions are recorded,
offering transparency, integrity, and resilience. However,
its inherent transparency poses significant privacy and
confidentiality challenges, undermining the privacy of its
users. Smart contracts have further extended blockchain’s
capabilities, automating transactions without the need for
intermediaries. Yet, a smart contract cannot easily work
with encrypted data. To address these privacy concerns,
Trusted Execution Environments (TEEs), such as Intel
SGX [1], [2], have emerged as a solution [3]. By in-
tegrating smart contracts with TEEs, it is possible to
execute these contracts in a secure execution space called
an enclave, preserving the confidentiality of the data while
maintaining the blockchain’s integrity and consistency.

Hyperledger Fabric Private Chaincode (FPC) [3] uti-
lizes TEEs to enhance the privacy and security of smart
contracts on the Hyperledger Fabric platform [4]. Despite
these advancements, FPC still suffers from rollback at-
tacks, where adversaries manipulate the system by replay-
ing old data. The authors of the original FPC paper [3]
acknowledge the need for rollback protection but merely
propose a prototype solution with significant limitations,
thereby highlighting that there is an area for improvement.

∗Work done while at IBM Research - Zurich.

This paper delves into potential solutions within the
FPC framework. The original FPC documentation sug-
gests a strawman approach of consolidating all values
under a singular state, a method that proves secure but
inefficient and unscalable. It also discusses a Trusted
Ledger Enclave solution, which was excluded from the
FPC RFC [5] due to high maintenance costs and subopti-
mal performance. We propose a Merkle tree-based solu-
tion that retains up to 95% of FPC’s original throughput
without rollback protection, demonstrating a minor com-
promise in efficiency for significantly improved security.

Our contributions are multifaceted, extending from
theoretical exploration to practical application:

• Feasibility Analysis: We assess the practicality
of existing rollback protection mechanisms from
literature in the context of the FPC, considering
their efficiency and effectiveness in Section 2.6.

• Solution Prototyping and Implementation: We
implement the Single Key-Value Storage and
Trusted Ledger Enclave solutions as described in
existing work in Section 2.7, and propose and
implement a new solution against rollback attacks
leveraging Merkle trees as presented in Section 3.

• Experimental Evaluation: We evaluate the secu-
rity, size of the Trusted Computing Base (TCB),
and performance implications of our proposed so-
lution in Section 4, comparing it with existing
work and offering insights into their practicality
and deployability.

2. Problem Description

We introduce the concept of TEEs and FPC first, and
then motivate the need for protection against selective
rollback attacks.

2.1. Trusted Execution Environments

Trusted Execution Environments (TEEs) provide a
secure space within processors, like Intel SGX [1], [2],
AMD SEV-SNP [6], and ARM TrustZone [7], ensuring
the confidentiality and integrity of the code and data exe-
cuted within. Remote Attestation, a crucial feature, enables
customers to verify that their binary code is indeed execut-
ing within the TEE, as asserted by the cloud provider. Intel
SGX, for example, creates protected memory regions, or
enclaves, safeguarding data from higher privilege levels
and external tampering [8], [9]. Additionally, features
like data sealing [10], a host-dependent capability, allows



for the encrypted storage of enclave data, preserving its
integrity for later retrieval. Despite their robustness against
unauthorized access, TEEs face challenges from physi-
cal [11], [12] and side-channel [13]–[18] attacks, with
continuous advancements in defense mechanisms [19],
[20] enhancing their security.

2.2. Hyperledger Fabric

Hyperledger Fabric, a key project of the Hyper-
ledger consortium hosted by the Linux Foundation, is
an open-source, permissioned blockchain framework that
supports smart contracts, known as chaincode [4]. Un-
like permissionless blockchains, such as Bitcoin [21]
and Ethereum [22], Fabric introduces a unique execute-
order-validate architecture to enhance security, privacy,
and efficiency. Execution: Transaction execution occurs
without state updates in a process also referred to as
chaincode simulation. Ordering: A dedicated service se-
quences transactions into blocks, ensuring ledger con-
sistency across the network. Validation: Transactions are
validated against specified policies, with only the valid
transactions being committed to the blockchain and their
state updates applied.

Fabric’s architecture is bolstered by its endorsement
policy [23], which specifies the required peers for transac-
tion approval, thereby ensuring a transaction’s validity be-
fore it is committed to the ledger. This policy is a corner-
stone of Fabric’s modular and permissioned design, which
not only facilitates scalability and robustness but also
allows for the development of confidential applications by
involving identifiable members and supporting traditional
Byzantine-Fault Tolerant (BFT) consensus mechanisms.
Additionally, Fabric’s adaptability is highlighted by its
support for smart contracts developed in popular pro-
gramming languages such as Go [24], Node.js [25], and
Java [26]. This feature positions Fabric as an ideal plat-
form for creating permissioned blockchain applications
that require a high degree of customization and privacy.
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Figure 1: Hyperledger Fabric architecture, highlighting the
transaction flow when a client invokes some chaincode.

A Hyperledger Fabric network comprises multiple
peers, clients, and an ordering service, that collabora-
tively maintains a distributed ledger. Each peer holds
the ledger of transactions and a “world state”, a key-
value database that reflects the latest status of all assets
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Figure 2: FPC architecture, emphasizing the execution
flow when a client invokes chaincode within an enclave.

for swift retrieval without reviewing the entire transac-
tion history. Figure 1 depicts the execution flow when a
client invokes some chaincode: (Step 1) A client sends
an invoke chaincode command to the peer nodes,
which execute the corresponding chaincode; (Step 2) If
needed, a peer node calls get_state() to fetch neces-
sary data from the world state during chaincode execution;
(Step 3) The peers return a cryptographically signed re-
sponse (also called endorsement) to the client; (Step 4)
The client gathers the endorsements from multiple peers
(according to the endorsement policy); (Step 5) Once
enough endorsements are collected, the client creates a
transaction and (Step 6) sends it to the ordering service.
(Step 7) The ordering service accumulates transactions,
sequences them, and crafts blocks of transactions; (Step 8)
A newly created block is broadcasted to all peers using
a gossip protocol [27]; (Step 9) Each peer validates the
transactions in the received block and appends them to
their ledger. Note that only valid transactions update the
world state accordingly. For more details on Hyperledger
Fabric, please refer to [4], [23].

2.3. Fabric Private Chaincode

Hyperledger Fabric Private Chaincode (FPC) [3] en-
hances Hyperledger Fabric by ensuring data confiden-
tiality and integrity through integration with Intel SGX
enclaves, termed as enclave chaincode. This setup se-
cures transaction data use, encrypts data transfers between
clients and chaincodes, and encrypts data stored in the
world state. The FPC client SDK enhances this security
by transparently encrypting chaincode invocation requests,
ensuring that data remains hidden from malicious peers.
Additionally, FPC’s integration of remote attestation al-
lows enclaves to verify their authenticity to external en-
tities, like Fabric clients or peers, ensuring interactions
only occur with verified enclaves running the expected
chaincode, thus maintaining a high level of privacy and
security in transactions. This architecture is particularly
aimed at applications requiring strong confidentiality, such
as privacy-centric analytics or secret ballot voting. In
traditional Fabric setups, application data is visible to all
peers, compromising the privacy of the application data.

As depicted in Figure 2, FPC integrates into the Fabric
architecture without major modifications. The primary



difference is the encapsulation of the chaincode within an
enclave, encrypting world state values. The execution flow
starts with an enclave-invoked request, with responses sent
back to the client. (Step 3a) The client seeks endorsements
from designated peers, (Step 3b) which verifies the trans-
action’s validity by checking the enclave signatures. After
obtaining the necessary endorsements, the transaction is
sent to the ordering service, following the same steps as
in the standard Fabric process.

2.4. Threat Model

We assume a Hyperledger Fabric network comprising
multiple clients and peers equipped with Intel SGX. The
peers are considered to be malicious and may collude
with a malicious client. Peers have full control over the
system’s operation, the ledger, and the world state but can-
not tamper with the execution of the chaincode residing
inside the FPC enclave. FPC encrypts and authenticates
all the messages between the FPC client and the chain-
code enclave, and all the data stored on the ledger and
world state. Malicious peers cannot decrypt the data nor
manipulate the data without detection. Moreover, a peer
can still observe the data flow to and from the enclave,
although they cannot directly access or alter the enclave’s
internal code and data. The system is considered secure if
malicious peers and clients cannot glean new information
as they act honestly, with the assumption that the Fabric
blockchain maintains data integrity and consensus against
a minority of malicious peers. External threats, such as
vulnerabilities within enclaves, side-channels, and denial-
of-service attacks are out of the scope of this paper.

2.5. Rollback Attack

A rollback attack on a TEE is a security exploit
that targets the state persistence of TEE applications. An
attacker may try to manipulate the TEE to reuse old data
or stale state, thereby “rolling back” the application to
a valid but outdated state. In our TEE application (i.e.,
chaincode), the state is a key-value store hosted outside
the TEE under the control of the peer node. We consider
two forms of rollback attacks: full rollback and selective
rollback. In a full rollback attack, all key-value pairs in the
world state are from the same version, but not the latest
version that the peer has seen. Conversely, a selective
rollback attack targets a subset of key-value pairs in the
world state, resulting in a mix of different versions. In our
threat model, our primary focus is on protecting against
breaches of confidentiality rather than integrity, which
is already ensured by Fabric’s properties [4]. Previous
work [3] has shown that a full rollback attack is equivalent
to the situation where a peer node does not have the latest
version of the ledger, for instance, due to network delays.
In that case, the attacker do not gain any new information
and the execution will not lead to a valid transaction that
causes a state update. However, it is the selective rollback
attack that poses a more potent threat, as it may undermine
the confidentiality of the system. Specifically for FPC,
selective rollback attacks are an issue. Considering the
case when the chaincode enclave calls get_state() to
read data from the world state. A malicious peer could
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Figure 3: Example of a rollback attack on Secret Keeper.

return the mix of old and recent state to the enclave,
compromising the confidentiality of the system.

We illustrate rollback attacks on FPC with a use-
case scenario called Secret Keeper, where some chaincode
implements a vault application. Authorized users can store
and retrieve secrets, and modify access control to the vault.
The Secret Keeper maintains two key-value pairs in the
world state: AuthorizationList contains the public
keys of users permitted to interact with the vault, whereas
Secret holds the secret information. To better illustrate
its functionality, a demo video is available on Loom1.

Suppose a user has been removed from the vault and a
new secret has been stored. When the user tries to access
the new secret, the enclave loads AuthorizationList
using get_state() and checks whether the user is
in the list. In this example, the user will be rejected.
However, the user may collude with a malicious peer to
access the new secret by mounting a rollback attack as
illustrated in Figure 3. The user invokes the enclave, but
this time get_state() will return an old version of
the AuthorizationList that still includes the user.
Thus, the enclave will call get_state() which returns
Secret which contains the latest secret. Even though
the data is encrypted and authenticated, the FPC enclave
cannot verify the freshness of the received data. The user
passes the authorization checks and receives the secret.
This violates the integrity and even breaks the confiden-
tiality of the Secret Keeper application. We show the
rollback attack in a demo video available on Loom2.

2.6. Related Work and Analysis

One solution to protect against rollback attacks is to
use a Monotonic Counter to achieve State Continuity.
Monotonic counters [28] allow to detection of state rever-
sions through persistent, increment-only values. However,
as acknowledged by other works [29]–[31], this approach
faces performance limitations, and write operation capac-
ity, and may not be available on every TEE platform.
Moreover, due to the execute-order-validate architecture
of Fabric, a client may choose not to submit the trans-
action to the ordering service, which may result in an
inconsistency between the ledger and the enclave’s mono-
tonic counter.

1. Secret Keeper Demo: https://www.loom.com/share/e3dca62f8df84
9229e2c6414fd374289?sid=473acda1-92ac-4ad6-89c4-ddb2f5786dd5

2. Rollback Attack Demo: https://www.loom.com/share/e540bf6395f
94ab8ba547bd43942d063?sid=b32de7ea-e5d7-43ef-9e06-bf11b3cfc6ff



Distributed systems like ROTE [30] propose data con-
sistency through multi-enclave communication to maintain
a consistent view. However, this approach does not align
with the design of FPC as inter-enclave communication is
not suitable for Fabric. EnclaveDB [32] and Nimble [33]
suggest storing sensitive data in SGX enclaves and using
fault-tolerant storage to detect rollback attacks. These
approaches appear to be impractical and expensive for
FPC considering the large world state maintained inside
the enclave. Furthermore, verification methods, including
formal verification tools [34] and libraries [35], offer roll-
back protection by validating state continuity or logging
enclave operations, yet they demand precise rule crafting
and increase the burdens of the chaincode developers.
Lastly, addressing the challenge of side-channel attacks is
critical for enclaves. Software solutions such as compiler
support for constant-time implementations can limit the
side-channel leakage [36]. These enhancements aim to
preserve security properties defined at the source code
level through to the binary level, mitigating vulnerabilities
introduced by compiler optimizations [37]. However, these
approaches often lack support for a broad range of proces-
sor architectures, typically require specialized knowledge
for effective use, such as secure coding practices, and may
not fully support modern processor features or the latest
programming language standards. We leave side-channels
out-of-scope for this paper; future works can address this
threat for FPC.

2.7. Existing Solutions

A naive approach to tackle the rollback problem is the
Single Key-Value Storage (SKVS) solution as mentioned
in the FPC RFC [38]. In this approach, all key-value
pairs are encapsulated and stored with a single call to
put_state(). During execution, the enclave must load
the entire state before it can access individual key-value
pairs. While this approach prevents the attack as explained
in Section 2.5, applications with large states and multiple
writers will experience bad performance, as the use of a
single key-value pair will cause transactions to fail due
to concurrent write issues. Since the Fabric architecture
operates on a three-phase execute-order-validate model.
Transactions are rejected during the validation phase if,
for example, the read-write set conflicts with the current
world state. This would occur if two transactions in the
same block attempt to modify the same key in the world
state. Given that the SKVS solution involves only one
key, if there is one write transaction in a block, subse-
quent transactions will experience read or write conflicts,
leading to rejection. From scalability as the data footprint
grows, leading to inefficiencies in handling multiple write
transactions within the same block. The implementation
of the SKVS solution can be found on GitHub [39].

Alternatively, the authors of FPC [3] proposed the
Trusted Ledger Enclave (TLE), designed to preserve the
integrity and the consistency of the ledger. The TLE main-
tains integrity metadata for each key-value pair, allowing
for verification of data versions obtained from peers. Each
time the enclave calls get_state() on the peer, it
simultaneously requests get_meta() from TLE. This
allows the chaincode enclave to check whether the data

obtained from the peer matches the version known to TLE,
thus preventing potential rollback attacks.

At first glance, TLE seems an ideal solution against
rollback attacks. However, the first version of the FPC
RFC [38] abandoned this solution due to high imple-
mentation complexity as it duplicates the peer validation
logic inside an enclave, leading to code redundancy and
maintenance difficulties. The implementation of the TLE
solution can be found on GitHub [40], [41].

3. Our Solution: The Merkle Tree Approach

In this section, we propose a new solution called
Merkle Tree Apporach (MTA) to protect against rollback
attacks for FPC by employing Merkle trees [42]. Inspired
by existing client-side verification techniques [31], our
solution enhances data security and integrity through ef-
ficient summarization and verification of transaction data.

At a high level, our solution works as follows. Each
peer maintains a Merkle tree of their world state. Before
clients invoke the chaincode enclave, they collect the latest
Merkle root from multiple peers and send them together
with the transaction to the enclave. When the enclave
receives the invocation, it validates the consistency of the
received Merkle roots and executes the chaincode. During
chaincode execution, the enclave can verify that each key-
value pair received via get_state() is consistent with
the world state of the other peers with the help of the
Merkle path and the Merkle root.

An important consideration is whether the enclave
should store the Merkle root and update it after each
chaincode invocation. This approach faces challenges as
the execution of chaincode in Hyperledger Fabric happens
speculatively, that is, the transaction is executed before
ordering and validation without any guarantee that the
resulting state change is actually applied to the world
state [4]. For example, a client may drop the endorsement
and never submit the transaction. If the enclave creates a
new Merkle root, it does not know when the corresponding
transaction gets committed and the state change becomes
live. The only way to learn this is to track the ledger,
which is the core idea of the TLE approach.

3.1. Architecture

We introduce the Merkle Tree Component and the Key
Enclave to the FPC architecture as depicted in Figure 4.
The Merkle Tree Component maintains a Merkle tree of
the world state for each peer. It provides operations to
retrieve the Merkle root and a Merkle path for a given
key-value entry. Messages containing the Merkle root are
cryptographically signed by the peer. The Merkle tree is
updated with every transaction committed to the ledger.

The Key Enclave is co-located with the chaincode
enclave and stores the peers’ public keys and endorsement
policies. It retrieves the configuration transaction from the
ledger, verifies them, and stores the public keys of the
peers and the endorsement policy for each chaincode. The
Key Enclave provides operations to the chaincode enclave
to fetch these public keys and to verify messages signed
by the peers. Note that the key enclave stores all the data
in its memory, although it might suffer from a rollback
attack on the enclave state. Preventing such attacks can be



straightforward, utilizing a monotonic counter, especially
given the assumption that configuration changes are in-
frequent and have low throughput. Alternatively, any of
the solutions discussed in Section 2.6 could be applied to
mitigate this risk.
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Figure 4: Architecture of our Merkle Tree Approach. The
Key Enclave and the Merkle Tree Component represent
additions to the system.

3.2. Protocol

Figure 5 illustrates the protocol of our solution as
integrated into the standard FPC transaction flow. When
a client invokes some chaincode, it starts by first (Step 0)
querying multiple peers to retrieve the Merkle root M
representing their current world state, and their latest
ledger height. (Step 1) The collection of Ms and ledger
height information are relayed to the chaincode enclave
as a parameter with the transaction invocation. (Step 1a)
The enclave then verifies the peer signatures on each M
with the help of the Key Enclave which selects a root
consistent with the FPC’s endorsement policy and starts
the execution of the chaincode with that ledger height.
(Step 2a) Every subsequent get_state() call to a peer
returns a pair: the value and its corresponding Merkle path.
(Step 2b) The enclave verifies this path against the initially
chosen Merkle root, and any inconsistency results in an
immediate halt. If the verification succeeds, we continue
with the standard FPC transaction flow as described in
Section 2.3. Finally, (Step 10) the Merkle Tree is updated
accordingly containing any changes to the ledger and
world state. The implementation of the MerkleTree
solution is available on GitHub [43], [44].

4. Evaluation

Next, we evaluate and compare our Merkle Tree Ap-
proach (MTA) with the SKVS and TLE solutions as de-
scribed in Section 2.7, focusing on security analysis, size
of the Trusted Computing Base (TCB), and performance
impact under various conditions.

4.1. Security Analysis

As mentioned in Section 2.4, malicious peers and
users aim to compromise the system’s confidentiality. This
section will illustrate how each solution we implemented
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Figure 5: The execution flow within our Merkle Tree
Approach when a client invokes some chaincode.

protects against the rollback attacks. The implementation
of malicious peers can be found on Github [45].

Single Key-Value Storage (SKVS): We store all the
data under a single key for every distinct version. As a
result, malicious peers and users cannot induce a version
mismatch and thereby compromise confidentiality. Even
if a malicious peer successfully rollbacks the world state,
users will not glean any new information. A demo video
is available on Loom3.

Trusted Ledger Enclave (TLE): The TLE verifies all
transactions directly from the trusted orderer and thereby
maintains its own view of the ledger. This ensures that
the TLE always possesses the latest metadata for each
key in the world state. If a malicious peer attempts to
send outdated data to the enclave, the enclave recognizes
the discrepancy in the value’s metadata and aborts the
execution. In a scenario where a malicious peer controlling
the network, blocks the blocks that the TLE receives from
the orderer and then sends old data to the enclave, the
query will still execute successfully. However, malicious
users will not acquire any new information. A demo video
is available on Loom4.

Merkle Tree Approach (MTA): In our model, we as-
sume that the majority of peers (> 50%) are honest. The
client must relay sufficient Merkle roots to the enclave,
enabling it to determine the correct Merkle root. This
ensures that the enclave always decides based on the
Merkle root. If a malicious peer attempts to supply data
from an alternative version, it cannot forge a Merkle path
leading to the same Merkle root due to the hash colli-
sion properties of SHA256. However, there’s a potential
scenario where malicious peers could coerce the enclave
into accepting an older version of the Merkle root (e.g., if
some honest peers are slow), which is equivalent to rolling
back to an older version of the ledger. Again, malicious
users will not glean any new information. A demo video
is available on Loom5.

3. SKVS Rollback Demo: https://www.loom.com/share/4790cd0cba9
e4433879083b41158d42d?sid=a0f367e7-dc49-4065-926d-df7b2fbf55a1

4. TLE Rollback Demo: https://www.loom.com/share/4e8814304bc
d49c9860861be524febbd?sid=c64b4cdb-0ae3-4125-93af-f369349f11f8

5. MTA Rollback Demo: https://www.loom.com/share/632e389fc03
540c4ae1de35440ccbbd1?sid=29d97578-61f5-43a8-b791-6ee5cce450ec



TABLE 1: Lines of changes for each solution’s codebase.

Solution TCB Changes Non-TCB Changes

SKVS 141 0
TLE 6,862 0
MTA 534 2,105

4.2. Trusted Computing Base (TCB)

Table 1 summarizes the distribution of code changes
for each solution. For the SKVS solution, 141 lines were
added while the TLE solution adds a total of 6,862 lines to
the TCB. MTA only incorporates 534 lines into the TCB.
An additional 2,105 lines are added outside of the TCB
for the Merkle Tree Component and the communication
between clients. These components are deemed vulnerable
to compromise by malicious actors and, therefore, are not
included within the TCB.

4.3. Performance Impact

In our performance evaluation, we focus on assessing
the impact on throughput and latency of all three solutions
under different conditions. We separate our evaluation
into four specific experiments. We examine the throughput
and latency while (a) altering the number of clients, (b)
varying network delays on these parameters, (c) changing
the number of peers, (d) in a real-world scenario (ExtSe-
cretKeeper) to ensure practical applicability.

The experiments were conducted on an Apple Mac-
Book Pro 13.3.1, equipped with an Intel Core i7 CPU,
and 32 GB of memory. Note that SGX hardware was not
available on this machine, necessitating the running of
all experiments in simulation mode. However, we posit
that this setup does not compromise the validity of our
results. We believe our solution primarily introduces ad-
ditional communication overhead between the client and
the peer at the network level, making the absence of SGX
hardware inconsequential for our evaluations. To simu-
late realistic network conditions in our local experiments,
we introduced artificial delays to mimic the Round Trip
Time (RTT) between a client, the orderer, and an FPC
peer, assuming they are on separate servers. We leave the
evaluation in a distributed setup for future work.

We fork the FPC’s branch go-support-preview [5],
which employs Hyperledger Fabric (v2.3.3) [46].
All our enclaves were complied and executed with
EGo (v1.0.0) [47] in simulation mode, using the
parameter OE_Simulation=1. For the experiments
(a)-(c), we utilize a chaincode named kvs-test-go (KVS).
The KVS chaincode essentially offers key-value storage,
encompassing three primary functions: get(), put(),
and delete(). We also exclude the SKVS solution
from experiments (a)-(c) because of the execution
read-write ratio of 50:50, many transactions in the SKVS
solution will be rejected, severely affecting performance.
This outcome does not represent the intended use case
for the SKVS solution. Further details can be found in
Section 2.7. For experiment (d), we leverage a chaincode
named ExtSecretKeeper, an extended version of the
Secret Keeper (see Section 2.5), to mimic real-world
applications. To set a baseline for our experiments,

we executed the same chaincode without any rollback
protection. In the following sections, we refer to this
baseline as native FPC.

(a) The Impact of Increasing Number of Clients. This
experiment evaluates the throughput and latency of the
MTA and TLE solutions against various clients. The setup
includes the KVS chaincode running on 2 peers, utilizing
the YCSB workload A [48] with a 50:50 read-write ratio,
an RTT of 15ms, and a Maximum Transaction Num-
ber (MaxTxnNum) per block set to the client count. Ex-
periments were conducted for a different number of clients
(1, 2, 4, 8, 16, 32, 64, 128, 256). We hypothesize that both
throughput and latency will increase as client numbers
rise. Figure 6a shows peak performance for all solutions
at 128 clients, with saturation beyond this point. For a
low number of clients, all solutions perform similarly, but
in a higher load, our MTA performs the best. At peak
performance, the TLE solution achieves nearly 65% of the
native FPC’s throughput, while MTA achieves nearly 95%
of the native FPC’s throughput. While our MTA meets our
expectations, the TLE solution lags behind the native FPC
in throughput after 16 clients. The reason for that is that
TLE allocates excess memory and threads, taxing local
computational resources. Additionally, the lack of TLE
state versioning meant that state updates were locking the
TLE state, impeding chaincode enclaves from accessing
key-value pair metadata.

(b) The Impact of Network Delays. This experiment
compares the TLE with our MTA with different network
delays. We employed the KVS chaincode on 2 peers,
adopting the YCSB workload A [48] with a 50:50 read-
write ratio, 64 clients and MaxTxnNum per block set to
the client count. Delays were tested for RTTs of 15ms,
30ms, and 100ms. We chose 64 clients because of its high
performance and relatively small variance as we observed
in the previous experiment. We anticipated that throughput
decreases with rising RTT delays and expected a linear
rise in latency as RTTs increase. As shown in Figure 6b,
MTA performs as expected in terms of throughput and
latency. In contrast, the TLE solution remains largely unaf-
fected by network latency changes, suggesting bottlenecks
remain elsewhere.

(c) The Impact of Increasing Number of Peers. We
run the TLE and MTA with a varying number of peer
counts. Using the KVS chaincode and using the YCSB
workload A [48] with a 50:50 read-write ratio, 64 clients,
an RTT of 15ms, and MaxTxnNum per block set to the
client count, we tried various peer counts (2, 4, 6, 8). We
expected a linear decline in throughput and a rise in terms
of latency with increasing number of peers. Figure 6c
shows that the results closely align with our expectations.
The throughput of the TLE solution, while lower than
native FPC, exhibited performance improvements, rising
from 65% (2 peers) to 74% (4 peers), further to 76% (6
peers) and then settling at 75% (8 peers) compared to
native FPC. However, it is worth noting that the TLE
solution’s latency has significantly increased when the
peer count has reached a value of 8, suggesting it had
reached saturation.



(a) (b) (c)

Figure 6: Impact on transaction throughput and latency of (a) varying number of clients; (b) varying time of network
delays; and (c) varying number of peers.

Figure 7: Performance of solutions in a real-world sce-
nario over 30,000 requests, with data recorded at intervals
of every 10,000 requests.

(d) Real-World Scenario Simulation. We deployed the
ExtSecretKeeper chaincode on two peers, using a work-
load similar to the YCSB workload B [49] with a 95:5
read-write ratio, 20 clients, MaxTxnNum per block equal
to client count, and a 15ms RTT network delay. This
scenario was run with 30,000 requests for various so-
lutions (SKVS, TLE, and MTA), with their latency and
throughput recorded at every 10,000 requests. As shown
in Figure 7, MTA is closely aligned with our expectations,
achieving 97% of the native FPC throughput. In contrast,
the TLE solution underperformed, reaching only 65% of
the native FPC throughput. This reduction is largely due to
the increased number of get_state() calls per request.
Specifically, while the key-value storage (KVS) example
involved a single get_state() call, this scenario re-
quires two of such calls, thereby doubling the query load
on the TLE solution and impacting its throughput. As
anticipated, the SKVS solution exhibited latency increases
with a higher total request count, resulting in a throughput
decrease from 80% (10,000 requests) to 71% (20,000
requests) and finally to 64% (30,000 requests). These

findings highlight the scalability limitations of the SKVS
solution under heavy request loads.

4.4. Summary

Our evaluation shows that our Merkle Tree Ap-
proach (MTA) is a highly effective rollback protection
strategy for FPC environments, closely matching native
FPC performance and enhancing security. It stands out for
its adaptability and comprehensive defense capabilities,
suitable for performance and security-centric applications.
Conversely, the TLE solution, despite its ambitious expan-
sion of the codebase and additional enclave, encounters
scalability and efficiency challenges, achieving only about
65% of native FPC throughput. Meanwhile, the SKVS
solution, with its minimal code addition and simplicity,
offers a direct fix to rollback attacks for read-heavy, low-
storage applications, though it struggles with scalability
and efficiency under increased data volume and read-
write conflicts. This comprehensive evaluation not only
affirms the efficacy of the proposed solutions but also lays
down a comparative framework for future research and
development in blockchain-specific rollback protection.

5. Conclusion

We revisited FPC’s issue against rollback attacks, a
prevalent threat where the trusted execution of smart
contracts relies on externally stored states and lacks se-
cure storage solutions. To that end, we implemented and
compared the performance of three solutions SKVS, TLE,
and our MTA, each tailored to address the issue rollback
attacks within the FPC environment.
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