
BesFS: A POSIX Filesystem for Enclaves with a Mechanized Safety Proof

Shweta Shinde ∗ †

University of California, Berkeley
Shengyi Wang∗

National University of Singapore
Pinghai Yuan

National University of Singapore

Aquinas Hobor
National University of Singapore

& Yale-NUS College

Abhik Roychoudhury
National University of Singapore

Prateek Saxena
National University of Singapore

Abstract
New trusted computing primitives such as Intel SGX have
shown the feasibility of running user-level applications in
enclaves on a commodity trusted processor without trusting a
large OS. However, the OS can still compromise the integrity
of an enclave by tampering with the system call return values.
In fact, it has been shown that a subclass of these attacks,
called Iago attacks, enables arbitrary logic execution in en-
clave programs. Existing enclave systems have very large
TCB and they implement ad-hoc checks at the system call
interface which are hard to verify for completeness. To this
end, we present BESFS—the first filesystem interface which
provably protects the enclave integrity against a completely
malicious OS. We prove 167 lemmas and 2 key theorems in
4625 lines of Coq proof scripts, which directly proves the
safety properties of the BESFS specification. BESFS com-
prises of 15 APIs with compositional safety and is expressive
enough to support 31 real applications we test. BESFS inte-
grates into existing SGX-enabled applications with minimal
impact to TCB. BESFS can serve as a reference implementa-
tion for hand-coded API checks.

1 Introduction

Existing computer systems encompass millions of lines of
complex operating system (OS) code, which is highly suscep-
tible to vulnerabilities, but is trusted by all user-level appli-
cations. In the last decade, a line of research has established
that trusting an OS implementation is not necessary. Specifi-
cally, new trusted computing primitives (e.g., Intel SGX [41],
Sanctum [24], Keystone [38]) have shown the feasibility of
running user-level applications on a commodity trusted pro-
cessor without trusting a large OS. These are called enclaved
execution primitives, using the parlance introduced by Intel
SGX—a widely shipping feature in commodity Intel proces-
sors today. Applications on such systems run isolated from

∗These joint first authors contributed equally to this work.
†Part of the research was done while at National University of Singapore.

the OS in CPU-protected memory regions called enclaves;
with various adversary models supported in individual de-
signs [24, 25, 38, 41, 47].

Enclave systems promise to minimize the trusted code base
(TCB) of a security-critical application. Ideally, the TCB can
be made boiler-plate and small enough to be formally verified
to be free of vulnerabilities. Towards this vision, recent works
have formally specified and checked the interfaces between
the enclave and the CPU [25, 50], as well as verified enclave
confidentiality properties [48, 49]. One critical gap remains
unaddressed: verifying the integrity of the application from a
hostile OS. Applications are increasingly becoming easier to
port to enclaves [15, 16, 18, 46]; however, these legacy appli-
cations optimistically assume that the OS is benign. A hostile
OS, however, can behave arbitrarily by violating assumptions
inherent in the basic abstractions of processes or files and ex-
change malicious data with the application. This well-known
attack was originally identified by Ports and Garfinkel as sys-
tem call tampering [43], more recently discussed as a subclass
called Iago attacks [19].

A number of enclave execution platforms have recog-
nized this channel of attack but left specifying the necessary
checks out of scope. For instance, systems such as Haven [16],
Google Asylo [3], Microsoft Open Enclave [6], Intel SGX
SDK [4], Panoply [46], Graphene-SGX [18], and Scone [15]
built on Intel SGX have alluded to syscall tampering defense
as an important challenge; however, none of these systems
claim a guaranteed defense. One of the reasons is that a hos-
tile OS can deviate from the intended behavior in so many
ways. Reasoning about a complete set of checks that suffice
to capture all attacks is difficult.

In this work, we take a step towards a formally verified TCB
to protect the integrity of enclaves against a hostile OS. To
maximize the eliminated attack surface and compatibility with
existing OSes, we propose to safeguard at the POSIX system
call interface. We scope this work to the filesystem subset of
the POSIX API. Our main contribution is BESFS—a POSIX-
compliant filesystem specification with formal guarantees of
integrity and a machine-checked proof of its implementation

in a high-level language. Client applications running in SGX
enclaves interact with a commodity (e.g., Linux) OS via our
BESFS implementation, running as a library (see Figure 4).
Applications use the POSIX filesystem API transparently
(see Table 3), requiring minimal integration changes. Being
formally verified, BESFS specifications and implementation
can further be used to test or verify other implementations
based on SGX and similar primitives.
Challenges & Approach. The main set of challenges in de-
veloping BESFS are two-fold. The first challenge is in estab-
lishing the “right” specification of the filesystem interface,
such that it is both safe (captures well-known attacks) and
admits common benign functionality. To show safety, we out-
line various known syscall tampering attacks and prove that
BESFS interface specification defeats at least these attacks
by its very design. The attacks defeated are not limited to
identified list here—in fact, any deviations from the defined
behavior of the BESFS interface is treated as a violation, abort-
ing the client program safely. To address compatibility, we
empirically test a wide variety of real-world applications and
benchmarks with a BESFS-enhanced system for running SGX
applications. These tests show a modest impact on compati-
bility, showing that the BESFS specification is rich enough
to run many practical applications on commodity OS imple-
mentations. The BESFS API has only 15 core operations.
However, it is accompanied crucially by a composition theo-
rem that safeguards chaining all combinations of operations,
making extensions to high-level APIs (e.g., libc) easy.

The second challenge is in the execution of the proof of
the BESFS implementation itself. Our proof turns out to be
challenging because the properties require higher-order logic
(hence the need for Coq) and reasoning about arbitrary be-
havior at points at which the OS is invoked. Specifically, the
filesystem is modeled as a state-transition system where each
filesystem operation transitions from one state to another.
Various design challenges arise (Section 5) in handling a
stateful implementation in the stateless proof system of Coq
and uncovering inductive proof strategies for recursive data
structures used in the BESFS implementation. These proof
strategies are more involved than Coq’s automatic tactics.

BESFS is specified, implemented and formally verified in
Coq which is a higher-level language. Converting Coq code to
machine code is out of the scope of this paper. Most existing
systems do not provide these guarantees even for non-enclave
code. There are several intermediate challenges in such a con-
version, especially when it is enclave-bound. Thus we resort
to a hand-coded conversion of BESFS implementation from
Coq-to-C and then use an Intel SGX compatible compiler to
obtain machine code which can execute inside the enclave.
For the completeness of the paper, we outline various chal-
lenges we faced in our attempt to generate enclave-bound
machine code from our Coq implementation of BESFS. We
discuss the existing alternatives and the required additions to
the immediate state of systems to make this feasible.

Results. Our BESFSCoq proof comprises of 167 theorems
and 4625 LOC. Our hand-coded C implementation of BESFS
is 1449 LOC and we add 724 LOC of stubs for compatibility
with enclave code. We use this C implementation for our per-
formance evaluation. We demonstrate the expressiveness of
BESFS by supporting 31 programs from benchmarks and real-
world applications. We show that BESFS is compatible with
state-of-the-art filesystems, benchmarks, and applications we
tested. It aids in finding implementation mistakes in existing
filesystem APIs exposed by Intel SGX frameworks. We hope
BESFS will serve as a specification for future optimizations
and other hand-coded implementations.
Contributions. We make the following contributions:

• We formally model the class of attacks that the OS can
launch against SGX enclaves via the filesystem API and
develop a complete set of specifications to disable them.

• We present BESFS—a formally verified set of API im-
plementations in Coq which are machine-checked for
their soundness w.r.t. the API specifications. Our auto-
generated run-time monitoring mechanism ensures that
the concrete filesystem execution stays within the enve-
lope of our specification.

• We prove 167 lemmas and 2 key theorems in 4625 LOC
Coq. We evaluate correctness, compatibility, and expres-
siveness of BESFS. We showcase BESFS on 31 pro-
grams from real-world applications and standard bench-
marks for CPU, I/O, and filesystem workloads.

2 Problem

There has been long-standing research on protecting the OS
from user-level applications. In this work, the threat model is
reversed; the applications demand protection against a mali-
cious OS kernel. We briefly review Intel SGX specifics and
highlight the need for a formal approach.

2.1 Background & Setup
Intel SGX provides a set of CPU instructions which can pro-
tect selected parts of user-level application logic from an
untrusted operating system. Specifically, the developer can
encapsulate sensitive logic inside an enclave. The CPU allo-
cates protected physical memory from Enclave Page Cache
(EPC) that backs the enclave main memory and its content is
encrypted. Only the owner enclave can access its own content
at any point during execution. The hardware does not allow
any other process or the OS to modify code and data or read
plain text inside the enclave boundary. Interested readers can
refer to [23] for full details.

Due to the strict memory protection, unprotected instruc-
tions such as syscall are illegal inside the enclave. However,
the application can use out calls (OCALLs) to executes system
calls outside the enclave. The enclave code copies the OCALL

System Name Release Date Total LOC # of APIs FS API API Level

Graphene-SGX July 2016 1325978 28 5 syscall
Panoply Dec 2016 20213 254 37 libc
Intel SDK Dec 2016 119234 24 15 Custom
Google Asylo May 2018 400465 39 7 Custom
BesFS Aug 2018 1449 21 13 POSIX

Table 1: Comparison of existing SGX filesystem support.

parameters to the untrusted partition of the application, which
in turn calls the OS system call, collects the return values, and
passes it back to the enclave. When the control returns to the
enclave, the enclave wrapper code copies the syscall return
values from the untrusted memory to the protected enclave
memory. This mechanism facilitates interactions between
the enclave and non-enclave logic of an application. A large
fraction of enclave applications need to dispatch OCALLs for
standard (e.g., syscalls, libc) or application-specific APIs.
Syscall Parameter Tampering. This is a broad class of at-
tacks and has been inspected in various aspects by Ports and
Garfinkel [43]; a specific subclass of it is called as Iago at-
tacks [19]. Ports-Garfinkel first showed system call tampering
attacks for various subsystems such as filesystem, IPC, pro-
cess management, time, randomness, and I/O. For file content
and metadata tampering attacks, their paper suggested de-
fenses by maintaining metadata such as a secure hash for file
pages and protecting them by MAC and freshness counter
stored in the untrusted guest filesystem. For file namespace
management they proposed using a trusted, protected daemon
to maintain a secure namespace which maps a file pathname
to the associated protection metadata. This way, checking
if OS return values are correctly computed would be easier
than undertaking to compute them. An added benefit is that
the TCB of such a trusted monitoring mechanism for the un-
trusted kernel is smaller. In this paper, our focus is on the
filesystem subset of the system calls. Further, we concentrate
on enclave-like systems for Intel SGX, but our work applies
equally well to other systems [22, 24, 25, 32, 38].

2.2 The Baseline: Existing Systems
All SGX-based systems such as Haven [16], Scone [15],
Panoply [46], Graphene-SGX [18], Intel Protected File Sys-
tem [4] which either use SDK or hand-coded OCALL wrappers
must address syscall parameter tampering attacks. Even non-
SGX TEEs have been shown to face the same threat [10, 22,
38]. These systems are upfront in acknowledging this gap and
employ ad-hoc checks for each API to address a subset of
attacks. Using integrity preserving filesystems [13] and for-
mally testing if a filesystem abides by POSIX semantics [44]
are stepping stones towards our goal, but they do not reason
about intentional deviations by a completely Byzantine OS.
We demonstrate representative attack capabilities on state-of-
the-art enclave systems with encrypted file storage to motivate
why a provable approach down to the details is important.
Baseline. We assume that the filesystem API uses authen-

1int log (char* fname, int mode, char* buf, int len) {
2 int errnum, cnt = 0; FILE* fd = fopen(fname, mode);
3 if (fd == NULL) {
4 errnum = errno;
5 if (errnum == EINVAL) fd = fopen (fname, "a"); // append
6 if (errnum == ENOENT)
7 if (fname == NULL) fname = "default.log";
8 fd = create_log(fname); // create empty log file
9 if (errnum == EINTR) fd = fopen (fname, mode); // retry

10 }
11 if (fd) cnt = fwrite(buf, 1, len, fd); // write log
12 return cnt;
13}
14void cast_vote () { // each tor node ...
15 status = log(log_file, mode, &vote, vote_len);
16 if (status) start_election();

Figure 1: Example enclave logic. The enclave opens a log file
and attempts recovery on failure by either changing the mode
(EINVAL), opening a new file since the path does not exist
(ENOENT), or reattempting the call (EINTR).

ticated encryption and attestation to prevent the OS from
directly tampering the file content. Further, we assume a set-
ting where the enclave tunnels all file-related system / library
calls to the untrusted OS. The untrusted OS simply reads and
writes encrypted blocks of data to the disk such that the con-
tent can only be decrypted inside the enclave. Most publicly
available enclave frameworks support such a baseline defense.
For concreteness, we discuss specific details of the four open
systems available today which support a filesystem interface
for enclave applications: Graphene-SGX [18], Panoply [46],
Intel Protected File System Library [4], and Google Asylo [3].
Table 1 shows the number of file APIs supported and the
LOC of these systems indicating that custom implementa-
tions have large TCB irrespective of the APIs they support.
More importantly, as we show in Section 2.3, they employ
ad-hoc checks which do not completely defeat the attacks by
the OS. As opposed to the state-of-the-art, BESFS provides
provable guarantees. Our corresponding implementation in
Coq as well as hand-coded C) lowers the TCB.

2.3 Is Encryption Sufficient?

Our baseline system encrypts and adds MAC tags to file
content. We show that this is not enough to protect against a
malicious OS. We recall attack examples from prior work and
present new attacks to show that BESFS is needed to defeat a
broad class of attacks that go well beyond memory safety.
Memory-safety Iago Attacks. Iago attacks show a subclass
of concrete attacks on memory allocation interfaces, wherein
the malicious OS overlaps memory-mapped (via mmap) pages.
The attack results in subverting the control flow in the en-
claved application. Iago attacks demonstrate that verifying
return values may require user-level defenses to carefully
enforce invariants on the virtual memory layout.
Logic Bugs via Return Value Tampering. We show how
the OS can mislead the application-level into taking incorrect
actions, without causing a crash, by exploiting the semantic

1static int file_open (..., const char * uri, int access, int share,
int create, int options) {

2 int fd = ocall_open(uri, access|create|options, share);
3 if (fd < 0)
4 return fd;
5 ...
6}
7static int sgx_ocall_open(void * pms) {
8 ms_ocall_open_t * ms = (ms_ocall_open_t *) pms;
9 int ret;

10 ODEBUG(OCALL_OPEN, ms);
11 ret = INLINE_SYSCALL(open, ...);
12 return IS_ERR(ret)?unix_to_pal_error(ERRNO(ret)):ret;
13}

(a) Graphene-SGX. Checks on success; otherwise forwards the error.

1SGX_WRAPPER_FILE sgx_wrapper_fopen(const char* filename, const char
* mode) {

2 SGX_WRAPPER_FILE f = 0;
3 sgx_status_t status = ocall_fopen(&f, filename, mode);
4 CHECK_STATUS(status);
5 return f;
6}

(b) Panoply. Forwards the fd and errors as-is if OCALL fails.

1SGX_FILE* sgx_fopen
2(const char* filename, const char* mode) {
3 return sgx_fopen_internal(filename, mode, NULL, key);
4}
5static SGX_FILE* sgx_fopen_internal
6(const char* filename, const char* mode) {
7 protected_fs_file* file = NULL;
8 if (filename == NULL || mode == NULL) {
9 errno = EINVAL;

10 return NULL;
11 }
12 ...
13}

(c) Intel Protected File System. Returns EINVAL instead of ENOENT.

1int secure_open(const char *pathname, int flags, ..){
2 ...
3 bool is_new_file = (enc_untrusted_access(pathname, F_OK) == -1);
4 int fd = enc_untrusted_open(pathname, flags, mode);
5 if (fd == -1)
6 return -1;
7 ...
8}
9int enc_untrusted_open(const char *path_name, int flags) {

10 uint32_t mode = 0;
11 int result;
12 sgx_status_t status = ocall_enc_untrusted_open(&result, path_name

, flags, mode);
13 if (status != SGX_SUCCESS) {
14 errno = EINTR;
15 return -1;
16 }
17 return result;
18}

(d) Google Asylo. Suppresses the error on failure and returns EINT.

Figure 2: SGX filesystem API support. Code snippets from four systems which support file open operation inside the enclave.

gap between SGX guarantees and POSIX API. This attack
works on encrypted filesystems since it perpetrates by return-
ing inconsistent return values. Figure 1 shows a simplified
enclave code which is executed by a node in a Tor-like ser-
vice [9]. The enclave logic casts votes, appending it to a log
file at each epoch, say in a sub-step of a consensus process.
Specifically, the enclave function log_vote opens an existing
log file in append mode. The enclave checks if the open was
successful or were there any errors. The function handles the
error conditions and once the fopen is successful, it writes
the vote content to the file via fwrite. As per POSIX stan-
dard, the library should return a NULL file pointer on fopen

failure and set the errno is set to indicate the error. If the file
name is invalid (e.g., empty string or a non-existing file path)
the error is ENOENT. If the mode is invalid the error should be
EINVAL, while EINTR indicates that the call was interrupted
and may succeed on a re-attempt. Figure 1 performs error
handling assuming a POSIX-reliant filesystem.

Figure 2 shows the implementation code snippets of file
open operation in four existing SGX platforms which im-
plement four different types of checks. Both Graphene-SGX
and Panoply simply forward the errno to the caller without
performing any checks (Figure 2a, 2b). In our example (Fig-
ure 1), the OS can trick the enclave into creating an empty file
by falsely sending ENOENT error code, even though the log
file exists. Both the systems cannot detect this attack. Intel’s
Protected File System (Figure 2c) returns an incorrect error
code as per the POSIX standards. If the enclave passes the log
name to be an empty string, the application will incorrectly

receive EINVAL and will not be able to log the vote. Google
Asylo (Figure 2d), does not perform any pre-checks on the
parameters and if the OCALL returns any errors, the system
always overwrites it with EINTR (Line 14). Thus, our exam-
ple demonstrates that although the existing systems employ
encryption on file content, they are vulnerable to logic bugs
due to incomplete interface security checks.

Glibc Logic Vulnerability due to Bad Initialization. We
present another attack which cannot be defeated by using
an encrypted file system or sealing within the enclave. The
glibc malloc subsystem allocates large chunks of memory
via anonymous mmap (Figure 3 Line 13). It then distributes
and collects parts of these chunks via malloc and free calls.
For glibc’s internal buffer management, the first 8 bytes of
each mmaped region are reserved for meta-data (e.g., tracking
the sizes of the allocated chunks in Figure 3 Line 5). The
POSIX specification dictates that if the mmap syscall requests
for anonymous memory regions, which are not file-backed,
the OS must initialize the memory contents to 0. Thus, when
glibc acquires a large buffer via anonymous-mapped memory
region it assumes that this region is filled with 0s by the
kernel. The glibc implementation then updates the size of the
current block by writing to the size field. For the first block
being mmaped, glibc does not write 0 to the prev_size as it
assumes those bytes are already set to 0.

In the implementation of free, glibc unmaps chunks if all
slots in those chunks are unallocated. For this, it performs
some arithmetic computation over the start address of a chunk
as well as the sizes of the current and previous chunks. Sup-

1/* There is only one instance of the malloc params. */
2static struct malloc_par mp_ = {...};
3typedef struct malloc_chunk {
4 size_t prev_size; /* previous chunk size(if free) */
5 size_t size; /* Size (bytes) including metadata */
6 ...
7}mchunkptr;
8static void *sysmalloc (INTERNAL_SIZE_T nb, mstate av) {
9 ...

10 mchunkptr p; /* the allocated/returned chunk */
11 char *mm; /* return value from mmap call */
12 ...
13 mm = (char *) (mmap (0, size, PROT_READ | PROT_WRITE, 0));
14 ...
15 p = (mchunkptr) mm;
16 p->size = size | IS_MMAPPED;
17
18 return chunk2mem (p);
19 ...
20}
21static void munmap_chunk (mchunkptr p) {
22 ...
23 uintptr_t block = (uintptr_t) p - p->prev_size;
24 size_t total_size = p->prev_size + size;
25 ...
26 munmap ((char *) block, total_size);
27 ...
28}

Figure 3: Glibc Attack. OS corrupts prev_size via mmap
(Line 13). It can trick glibc into inadvertently unmapping
larger memory range (Line 26) without the updating glibc’s
internal metadata which violates its constraints.

pose the allocated region is [P,P+s) where P and s denote the
start address and length respectively. Further, let X denote the
value of the first 8 bytes of a chunk i.e., variable prev_size.
Lines 23-26 in Figure 3 invoke the unmap syscall for the ad-
dress range [P−X ,P+ s). In the case of the first chunk, the
value of X is 0 and glibc will unmap [P,P+s] which is correct.
Note that if the OS returns mmaped memory which is filled
with non-0s, it can control the value of X . For example, if the
OS selects X 6= 0∧X < P, it will trick glibc into unmapping
not only [P,P+ s] but also [P−X ,P]. Neither glibc nor the
application is aware of this inadvertent unmapping and their
internal metadata will no longer reflect the correct state.

In general, such an attack can break the consistency en-
forced by various program components. For instance, a
garbage collector which maintains invariants about how ob-
jects are traced by reference chains may use the memory
mapping information to mark the memory occupied by freed
objects to avoid use-after-free. More broadly, many security
primitives (e.g., control-flow integrity, fat pointers, taint anal-
yses) maintain shadow metadata at fixed offsets from program
objects, which could be affected by such inconsistency bugs.

3 BESFS Design

All the classes of filesystem API attacks presented in Sec-
tion 2.3 stem from the fact that the OS can deviate from its
expected semantics. Our goal is to design a filesystem inter-
face, called BESFS, which protects the enclave from a broad
category of such attacks. These attacks include (but are not

limited to) Iago attacks, file content manipulation such as
mapping multiple file blocks of the same or different files to
single physical block, operating on content at the wrong off-
set or block, and misaligned sequences of file blocks in a file.
Further, the OS can perpetrate mismatch attacks by ignoring
the user-provided parameters such as paths, file descriptor, or
size (e.g., violate the size requested in the operations). Lastly,
it can change the error codes returned by the filesystem and
force the enclave to execute a different control-flow path.

3.1 Approach

We seek for the right abstraction which is necessary to capture
the filesystem behavior inside the enclave as well as sufficient
to detect any deviation from the Byzantine OS. Attacks on
an enclave can arise at multiple layers of the filesystem stack.
Our choice of the layer where we formally proof-check the
BESFS API is guided by the observation that the higher the
layer we safeguard, the larger the attack surface (i.e., TCB)
we can eliminate, and the more implementation-agnostic the
BESFS API becomes. One could include all the layers start-
ing at the disk kernel driver, where content is finally mapped
to persistent storage, in the enclave TCB. Enforcing safety
at this interface will require simply encrypting/decrypting
disk blocks with correct handling for block positions [37].
Alternatively, one could include a virtual filesystem manage-
ment layer, which maps file abstractions to disk blocks and
physical page allocations, in the enclave—as done in several
LibraryOS systems like Graphene-SGX [16, 18]. To ensure
safety at this layer, the model needs to reason about simple
operations (reads, writes, sync, and metadata management).
Further up, one could design to protect at the system call layer,
leaving all of the logic for a filesystem (e.g., journaling, phys-
ical page management, user management, and so on) outside
the enclave TCB. However, this still includes the entire library
code (e.g., the libc logic) which manages virtual memory of
the user-level process (heap management, allocation of user-
level pages to buffers, and file-backed pages). For instance,
this is 1.29 MLOC and 88 KLOC in glibc and musl-libc, re-
spectively. Once we include such a TCB inside the enclave,
we either need to prove its implementation safety or trust it
with blind faith. We decide to model our API above these
layers, excluding them from the TCB.

BESFS models the POSIX standard for file sub-systems.
POSIX is a documented standard, with small variations across
implementations on various OSes [44]. In contrast, many of
the other layers do not have such defined and stable interfaces.
At the POSIX layer, BESFS models the file / directory path
structures, file content layouts, access rights, state metadata
(file handles, position cursors, and so on). Specifically, BESFS
ensures safety without the need to model virtual-to-physical
memory management, storage, specifics of kernel data struc-
tures for namespace management (e.g., Linux inode, user
groups), and so on. BESFS is thus generic and compatible

with different underlying filesystem implementations (NFS,
ext4, and so on). Further, this API choice reduces the proof
complexity as they are dispatched for simpler data structures.
Solution Overview. BESFS is an abstract filesystem interface
which ensures that the OS follows the semantics of a benign
filesystem—it is exhibiting observationally equivalent behav-
ior to a good OS. This way, instead of enlisting potentially
an infinite set of attacks, we define a good OS and deviation
from it is categorized as an attack from a compromised or
a potentially malicious OS. Specifically, our definition of a
good OS not only includes POSIX-compliance but also a set
of safety properties expected from the underlying filesystem
implementation. We design a set of 15 core filesystem APIs
along with a safety specification. Table 3 shows this BESFS
POSIX-compliant interface, which can be invoked by an ex-
ternal client program running in the SGX enclave. It has a
set of methods, states, and safety properties (SP1-SP5 and
TP1-TP15) defined in Section 3.2. Each method operates on
a starting state (implicitly) and client program inputs. The
safety properties capture our definition of a benign OS be-
havior. Empirically, we show in Section 7 that the real imple-
mentations of existing OS, when benign, satisfy the BESFS
safety properties—the application executes with the BESFS
interface as it does with direct calls to the OS. Further, the
safety properties reject any deviations from a benign behav-
ior, which includes all the above attacks. Thus, BESFS is a
state transition system. We define a good start state that satis-
fies the state properties (SP1-SP5). Our transition properties
(TP1-TP15) ensure that the file system is in a good state after
executing a BESFS API call.

Importantly, we prove that the safety of BESFS API is
serially composable. This composability is crucial to allow
executions of benign applications that make a potentially
infinite set of calls. Further, one can model higher-level API
(e.g., the fprintf interface in libc) by composing two or
more BESFS API operations. Thus, composition property
allows us to reduce the size of the core APIs that have to be
proved as well as reduce the attack surface for the OS. To
ensure serial composition, the state safety properties (SP1-
SP5) enforce that if we invoke a BESFS core API operation in
a good (safe) state, we are guaranteed to resume control in the
application in a good state. Second, we show that calls can be
chained, i.e., the good state after a call can be used as an input
to any of the BESFS calls, through a set of safe transition
properties (TP1-TP15). We provide a machine-checked Coq
implementation of the BESFS API (Section 3.2).

Theorem 1 (State Transition Safety.) Given a good state S
satisfying prei, if we execute fi to reach state S′, then S′ is
always a good state and the relation between S and S′ is valid
according to the transition relation τi:

∀S,S′, i. S |= SP1–SP5 ∧ prei(S) ∧ S
fi S′ ⇒

τi(S,S
′) ∧ S′ |= SP1–SP5

We can verify sequences of calls to our API by inductively
chaining this theorem. Our second theorem states that the
state property is preserved for a composition of any sequence
of interface calls. We close the proof loop with induction by
starting in a good initial state and using Theorem 1 to show
that a method invocation in BESFS always produces a good
state for a sequential composition of transitions. Coq proof
assistant dispatches the proof.

Theorem 2 (Sequential Composition Safety.) Given a
good initial state S0 subject to a sequence of transitions
τm1 , . . . ,τmn always produces a good final state Sn:

S0 |= SP1–SP5 ∧S0
fm1 S1 ∧S1

fm2 S2 ∧·· ·∧Sn
fmn Sn

⇒∧τm1(S0,S1) ∧ τm2(S1,S2) ∧ . . . ∧ τmn(Sn−1,Sn) ∧
Sn |= SP1–SP5

Scope. We limit the scope of BESFS goals in two ways:

• For safety and simplicity, BESFS filesystem state and
API intentionally does not include all the features in
a typical full-fledged filesystem. The enclave files can
be concurrently accessed by non-enclave applications,
as long as the applications abide by the safety restric-
tions enforced by BESFS. We detect if any entity (other
enclaves, user applications, the OS) violates BESFS in-
variants and abort the enclave.

• BESFS aims strictly at integrity property. Several known
side-channels and hardware mistakes impact the confi-
dentiality guarantees of SGX [36, 52]. Out of the 167
lemmas in BESFS, only one lemma assumes the cor-
rectness of the cryptographic operations. Specifically,
BESFS assumes the secrecy of its AES-GCM key used
to ensure the integrity of the filesystem content. Our
lemma assumes that the underlying cryptography does
not allow the adversary to bypass the integrity checks by
generating valid tags for arbitrary messages. Further, we
assume that the adversary does not know the AES-GCM
key used by the enclave to generate the integrity tags.
Higher-level confidentiality guarantees are not within
the scope of BESFS goals (c.f. [27, 48, 49]).

3.2 BESFS Interface
BESFS interface is a state transition system. It defines a set
of valid filesystem states and methods to move from one state
to another. While doing so, BESFS dictates which transitions
are valid by a set of transition properties.
State. BESFS has type variables which together define a state.
We choose to include minimal filesystem metadata in the
BESFS state while providing maximum expressiveness in
its APIs. This selection is inspired by our survey of previous
filesystem verification efforts for various purposes [13, 34,
44]. Specifically, BESFS state comprises valid paths in the

filesystem (P), mappings of paths to file / directory identifiers
and metadata (N), set of open files (O), memory maps of file
content (M), memory map of anonymously mmaped page
content (A), and anonymous page mapping metadata (Q). We
define them as follows:

P := {p | p : Path} N := Path9 Id×Permission×Size

A := N9 Byte Q := {(sAddr,length) | sAddr : N,length : N}
M := Id×N9 Byte O := {(fileId,cursor) | fileId : Id,cursor : N}

All file and directory paths in the filesystem are captured by
path set P , where Path represents the path data type. A direc-
tory path type is denoted by PDIR, whereas a file path type is
denoted by PFILE. We define the Parent operator which takes
in a path and returns the parent path. For example, if the path
p is /foo/bar/file.txt, then Parent(p) gives the parent
path /foo/bar. BESFS captures the information about the
files and directories via the node map N . BESFS allocates
an identifier to each file and directory for simplifying the op-
erations which operate on file handles instead of paths. We
represent the user read, write, and execute permissions by
Permission. The size field for a file signifies the number of
bytes of file content. For directories, the size is supposed to
signify the number of files and directories in it. For simplicity,
BESFS currently does not track the number of elements in
the directory and all the size fields for all the directories are
always set to 0. For a path p, we use the subscript notations
N (p)Name, N (p)Id, N (p)perm, and N (p)Size to denote the
name, id, permissions, and size respectively. Each open file
is tracked using O via its file id. O tracks the current cursor
position for the open file to facilitate operations on the file
content. Given a tuple o ∈ O, for simplicity, we use subscript
notations oId and oCur to denote the id and the cursor position
of that file. The file content is stored in a byte memory and
each byte can be accessed using the tuple comprising file
id and a specific position. The anonymously mapped mem-
ory is stored in a separate byte memory and can be accessed
using a position. Q tracks the anonymous memory alloca-
tions which include the start position and total length of each
mapping. Thus, BESFS state SBESFS is defined by the tuple
〈P ,N ,Q ,A ,O,M 〉. Note that the BESFS API includes calls
to open and close the filesystem. The user can use these calls
to persist the internal state of BESFS inside the enclave for re-
boots and crash recovery similar to traditional filesystems [21].
More importantly, these two APIs ensure that the filesystem
has temporal integrity to prevent rollbacks. BESFS ensures
that the enclave sees the last saved state on reboot/restart.
State Properties. The state variables cannot take arbitrary
values. They must abide by a set of state properties defined by
BESFS stated in Table 2. For path set P , BESFS enforces that
the entries in the path set are unique and do not contain cir-
cular paths. This ensures that each directory contains unique
file and directory names by the definition of a path set. All
files and directories in BESFS have unique identifiers and are
mapped by the partial function N to their metadata such as

SPi State Property Definition

SP1 dom(N) = P∀(p, p′) ∈ P ×P , p 6= p′⇒N (p)Id 6= N (p′)Id
SP2 ∀o ∈ O,∃p s.t. p ∈ P ∧N (p)Id = oId
SP3 ∀(o,o′) ∈ O×O,oId = o′Id⇒ o = o′

SP4 ∀p ∈ P ,o ∈ O,N (p)Id = oId ⇒ oCursor < N (p)Size
SP5 ∀f,∀o,∃p s.t. p ∈ P ∧ f= N (p)Id ∧ o< N (p)Size⇒M (f ,o) 6=⊥

Table 2: BESFS State Properties. Formal definitions of the
state properties enforced at any point in time.

permission bits and size, stated formally as SP1. All open file
IDs have to be registered in the O (SP2). O can only have
unique entries (SP3) and the cursor of an open file handle
cannot take a value larger than that file’s current size (SP4).
As per SP5, M and A do not allow any overlaps between
addresses and have a one-to-one mapping from the virtual
address to content. The partial functions for M and A ensures
this by definition. All file operations are bounded by the file
size and all anonymous memory dereferences are bounded by
the size of the allocated memory. Specifically, the file memory
can be dereferenced only for offsets between 0 and the EOF.
Any attempts to access file content beyond EOF are invalid
by definition in BESFS and is represented by the symbol ⊥.
Similarly, the current cursor position can only take values
between 0 and EOF (SP5).
Transition Properties. BESFS interface specifies a set of
methods listed in BESFS API in Table 3. Each of these meth-
ods takes in a valid state and user inputs to transition the
filesystem to a new state. BESFS interface facilitates safe
state transitions. Formally, we represent it as τmi(S,S

′,
−→out),

where τmi is the interface method invoked on state S to pro-
duce a new state S′. The vector −→out represents the explicit
results of the interface. This way, BESFS enforces state tran-
sition atomicity i.e., if the operation is completed successfully
then all the changes to the filesystem must be reflected; if the
operation fails, then BESFS does not reflect any change to
the filesystem state.
BESFS Safety Guarantees. BESFS satisfies the state prop-
erties at initialization because the start state (Sinit) is empty.
Specifically, all the lists are empty and the mappings do not
have any entries. So, they trivially abide by the state prop-
erties in (Sinit). Once the user starts interfacing with the
BESFS state, we ensure that BESFS state properties (SP1-
SP5) still hold. Further, each interface itself dictates a set of
constraints (e.g., the file should be opened first to close it).
Thus, interface-specific properties not only ensure that the
state is valid but also specify the safe behavior for each in-
terface. Transition properties TP1-TP15 (Table 3) define type
map, state, and state transition for BESFS interface.

3.3 How Do Our Properties Defeat Attacks?
Our state properties in Section 3.2 and transition properties
in Table 3 are strong enough to defeat the OS attacks.
File & Memory Content Manipulation (A1). Our baseline

TPi BESFS Interface Pre-condition Prei(S) Transition Relation τi(S,S′)

TP1
fs_close (h : Id) ∃o, oId = h ∧ o ∈ O S′ = S[O/O−{o}] ∧ e = ESucc→ (e : Error)

TP2

fs_open (p : Path) p ∈ P ∧
S′ = S[O/O +{(N (p)Id, 0)}] ∧

e = ESucc∧

→ (h : Id, ∀o ∈ O, N (p)Id 6= oId h = N (p)Ide : Error)

TP3
fs_mkdir (p : Path, p /∈ P ∧ Parent(p) ∈ PDIR∧ S′ = S[P/P +{p}, ∧ e = ESuccr : Perm) N (Parent(p))W = True→ (e : Error) N /N

⊕
(p 7→ 〈h, r, 0〉)]

TP4
fs_create (p : Path, p /∈ P ∧ Parent(p) ∈ PDIR∧ S′ = S[P/P +{p},

∧ e = ESuccr : Perm) N (Parent(p))W = True N /N
⊕

(p 7→ 〈h, r, 0〉)]→ (e : Error)

TP5

fs_remove (p : Path) p ∈ PFILE∧
S′ = S[P/P −{p}] ∧ e = ESucc→ (e : Error) N (Parent(p))W = True

TP6

fs_rmdir (p : Path) p ∈ PDIR ∧ ∀q ∈ P , Parent(q) 6= p∧
S′ = S[P/P −{p}] ∧ e = ESucc→ (e : Error) N (Parent(p))W = True

TP7

fs_stat (h : Id) ∃o, oId = h ∧ o ∈ O∧
S′ = S ∧

e = ESucc∧

→
(r : Perm, r = N (p)Perm∧
n : String, ∃p,N (p)Id = h ∧ p ∈ PFILE

l = N (p)Size∧
l : N, e : Error) n = N (p)Name

TP8

fs_readdir (p : Path)
p ∈ PDIR S′ = S ∧

e = ESucc∧

→ (l : [String], ∀n ∈ l, p+n ∈ P
e : Error)

TP9
fs_chmod (p : Path,

p ∈ P S′ = S[N /N
⊙

(p 7→ 〈N (p)Id, r, N (p)size〉)] ∧ e = ESuccr : Perm)
→ (e : Error)

TP10
fs_seek (h : Id, ∃o, oId = h ∧ o ∈ O∧

S′ = S[O/O−{o}+{(h, l)}] ∧ e = ESuccl : N)
→ (e : Error) ∃p,N (p)Id = h ∧ l < N (p)Size

TP11

fs_read (h : Id, ∃o, oId = h ∧ o ∈ O∧
S′ = S[O/O−{o}+{(h,oCur+ l)}] ∧

e = ESucc∧
l : N)

→ (b : [Byte], ∃p,N (p)Id = h ∧ oCur+ l < N (p)Size
b = M (h,oCur), . . . ,

M (h,oCur+ l))e : Error)

TP12
fs_write

(h : Id, ∃o, oId = h ∧ o ∈ O∧ S′ = S[O/O−{o}+{(h, l +blen)},
∧ e = ESucc

l : N,
b : [Byte]) ∃p,N (p)Id = h ∧ l < N (p)Size

M /M
⊙

((h, l) 7→ b[0], . . . ,
((h, l +blen) 7→ b[blen])]→ (e : Error)

TP13
fs_truncate (h : Id, ∃o, oId = h ∧ o ∈ O∧

S′ = S[N /N
⊙

(p 7→ 〈N (p)Id, N (p)perm, l〉)] ∧ e = ESuccl : N)
→ (e : Error) ∃p,N (p)Id = h ∧ l < N (p)Size

TP14
fs_mmap (l : N)

l > 0 S′ = S[Q /Q +{(a, l)},A/A
⊙

([a] 7→ 0, . . . , [a+ l−1] 7→ 0)] ∧ e = ESucc→ (a : N,e : Error)

TP15
fs_unmmap (a : N) ∃q,qsAddr = a∧q ∈ Q

S′ = S[Q /Q −{(a, qlength)}] ∧ e = ESucc→ (e : Error)

Table 3: BESFS Interface. Method API, pre-conditions, transition relations and post-conditions. S′=S[K /K ′] denotes everything
in S′ is the same as S, only K is replaced with K ′. In Column 4, the− and + symbols denote set addition and deletion operations.⊕

denotes new mapping is added and
⊙

denotes update of a mapping in relation.

encrypts all the file data blocks and anonymously mmapped
content which prevents direct tampering from the OS. How-
ever, there are other avenues of attacks beyond this which
BESFS captures. Specifically, the unique mapping property
(SP5) of M and A ensures that the OS cannot go undetected if
it reorders or overlaps the underlying pages of the file content
or anonymous mmaps.

Path Mismatch (A2a). BESFS state ensures that each path
is uniquely mapped to a file or directory node. All methods
which operate on paths first check if the path exists and if the
operation is allowed on that file or directory path. For example,
for a method call readdir(“foo/bar”), the path foo/bar
may not exist or can be a file path instead of a directory path.
SP1 ensures that file directory paths are distinct, unique, and
mapped to the right metadata information. Subsequently, any

queries or changes to the path structure ensure that these
properties are preserved. For example, fs_create checks
if the parent path is valid and if the file name pre-exists in
the parent path. The corresponding state is updated if all the
pre-conditions are met (SP4).

File Descriptor Mismatch (A2b). Once the file is opened
successfully, all file-content related operations are facilitated
via the file descriptor. BESFS ensures that the mappings from
the file name to the descriptor are unique and are preserved
while the file is open. Further, BESFS maps any updates to
the metadata or file content via the file descriptor such that it
detects any mapping corruption attempts from the OS (SP5).

Size Mismatch (A3). BESFS’s atomicity property ensures
that the filesystem completely reflects the semantics of the
interface during the state transition. Our file operations have

properties which ensure that BESFS operates on the size spec-
ified in the input. fs_read, fs_write, and fs_truncate
post-conditions reflect this in Table 3.
Error Code Manipulation (A4). All state or transition prop-
erty violations in the interface execution map to a specific
error code. Each of these error codes distinctly represents
which property was violated. For example, if the user tries to
read using an invalid file descriptor, the SP3 and TP11 prop-
erties are violated and BESFS return an eBadF error code.
If there are no violations and the state transition succeeds,
BESFS returns the new filesystem state and ESucc. BESFS
interface performs its own checks to identify error states. This
way, we ensure that the OS cannot go undetected if it attempts
to manipulate the enclave with wrong error codes.
Iago & Libc Attacks. BESFS defends against a broader class
of attacks, including Iago attacks, because we check all the
return values after a file-related system call. We ensure that
the values are correct by checking it against the in-enclave
state of the filesystem. For anonymous mmap, BESFS checks
if the untrusted memory region returned by the OS is indeed
zeroed out. BESFS makes a copy of the mmaped memory
inside the enclave and all accesses to the mmaped memory
are redirected to the in-enclave address.

4 BESFS Implementation

BESFS defines a collection of data structures that implement
the BESFS interface design in Section 3.2. Our implemen-
tation in Coq is mechanically proof-checked and is the first
such system of its kind for enclaves. We build BESFS types
by composition and/or induction over pre-defined Coq types
ascii, list, nat, bool, set, record, string, map in Coq
libraries. All files and directories in BESFS have ids f and
d respectively. These ids are mapped to the corresponding
file and directory nodes Fda and Dda. Specifically, Fda stores
the file name, permissions, all the pages that belong to this
file, and the size of the file; Dda stores the directory name,
permission bits, and the number of files and directories inside
it. Mta represents the permissions and size metadata. We give
their simplified definitions:

f := N d := N
Pg := [Byte]PG_SIZE Pmn := W×R×E

Mta := Pmn×N PgId := N
Fda := Str×Mta× [PgId] Dda := Str×Mta

T := FILE: f | DIR: d× [T] O := [f×N] Q := [N×N]

The BESFS filesystem layout T stores f and d in a tree form to
represent the directory tree structure. The list of open file han-
dles O stores tuples of f and cursor position. Lastly, each page
is a sequence of PG_SIZE bytes which is the typical size of a
page1 and has a unique page number PgId. Finally, the entire

1We set the page size (PG_SIZE) to 4096 bytes.

Untrusted OS (e.g., Linux)

File system (e.g., EXT4)

Application Enclave

Machine-
checked

Proof

Machine-
checked Code

Coq Theorem
Prover

BesFS
Impleme-

ntation

BesFS
Specifi-
cation

Syscall
Stubs

Proof
Script

Be
sF

S
 L

ib
ra

ry

Encrypt / Decrypt Layer

Tree Layout

Virt Mem Map

Page
Content

Equivalent
Hand-coded C

Implementation

Compiler

Coq-to-
executable

OR

Figure 4: BESFS Overview. Thick and dotted represents
trusted and untrusted components respectively.

filesystem memory map is stored as a list v. BESFS uses v to
track the metadata for each page allocated outside the enclave
to the filesystem. v does not save the actual page content of
the file inside the enclave, but only saves the metadata such as
file id, page id, and AES-GCM authentication tags (Figure 4).
To summarize, BESFS implementation state comprises of:

Fsys := (t : T,h : O,m : Q, v : [Pg],q : [Pg],F : f→ Fda,D : d→ Dda)

BESFS implementation must satisfy the state properties
SP1-SP5 and transition properties TP1-TP15 outlined in Sec-
tion 3.2. Table 4 summarizes the enforced invariants. Next,
we discuss how we achieve this for each data structure.
Virtual Memory Map (M). Each file is an ordered sequence
of pages. BESFS assigns page ids to each page in the filesys-
tem. BESFS virtual memory map M is completely indepen-
dent and unrelated to the OS-allocated virtual address. For
BESFS, the filesystem memory is represented by a set of vir-
tual memory pages. Each page is a sequence of PG_SIZE
bytes and is represented by a unique page id PgId. M tracks
the virtual memory layout by storing the page metadata in the
filesystem. 4000 bytes of each page comprises of the page
content while the remaining 96 bytes are metadata for in-
tegrity protection and can be used to store other metadata
currently not traced by BESFS. Pages are stored outside the
enclave in an encrypted form and are decrypted at the enclave
boundary. BESFS uses the virtual memory map M inside
the enclave to track and verify the integrity of the page con-
tent returned by the OS. This mechanism is similar to merkle
tree implementations for encrypted filesystems [51]. BESFS
further ensures that a page belongs only to a single file and
files do not have page overlaps. The M map implementation
marks the unallocated page metadata slots as free in the pool.
Anonymous Memory Mapping (A) & Handles (Q). When
an anonymously mmaped memory region is first allocated in
the untrusted memory, BESFS first checks if the allocation
is valid i.e., the memory returned by the OS is indeed zeroed
out. BESFS then makes a copy of it into its enclave protected
memory. 2 During this step, BESFS registers a handle for the

2The scalability of such a virtual address space mapping duplication is
not affected by the current limit on the EPC size (90 MB), because SGX does
not limit the enclave virtual memory to 90 MB.

Virtual
Memory Map M ∀i j, i 6= j⇒ F(i)[2]∩F(j)[2] = /0

Files &
Directories N

FIDS(FILE: i) := [i]
FIDS(DIR: i s) := FIDS(s[1])+ · · ·+FIDS(s[n])
DIDS(FILE: i) := []
DIDS(DIR: i s) := [i]+DIDS(s[1])+ · · ·+DIDS(s[n])

Layout &
Paths P

TREENAME(FILE: i) := F(i)[0]
TREENAME(DIR: i s) := D(i)[0]
NoDupName(t : T) := ∃ i, t = FILE: i∨
∃d s, t = DIR: d s∧ (∀i, NoDupName(s[i]))∧
(∀i j, i 6= j⇒ TREENAME(s[i]) 6= TREENAME(s[j]))
NoDup([. . .si . . .s j . . .]) := ∀i j, i 6= j⇒ si 6= s j

Open file
handles O IDS([. . . ,(fi, pi), . . . ,(f j, p j), . . .] : O) := [. . . , fi, . . . , f j, . . .]

NoDup(IDS[. . .si . . .s j . . .]) := ∀i j, i 6= j⇒ si 6= s j

Anon Mmaps
& Handles

A
Q

MIDS(Q: i) := [i] ∧ NoDup(MIDS[. . .(ai, li) . . .(a j, l j) . . .]) :=
∀i j, , i 6= j, ∃k ∈ (0, li)⇒ a j 6= ai + k

Table 4: BESFS data structures definitions & invariants.

new mapping which consists of the start address and the to-
tal length of the mapped memory. BESFS allocation ensures
that the mmaped regions do not overlap with existing alloca-
tions. All accesses to the mmaped region are redirected to the
protected memory. When the region is unmmaped, BESFS
deletes the handle, marks the pages in protected memory as
available, and relays the unmap call to the OS. Further, it
ensures that the memory layout does not overlap after unmap.

Files & Directories (N). Each file’s information including
the file name, the current size, and the permission bits are
stored in a file node Fda. Each file’s content is a sequence
of bytes, partitioned into uniformly sized pages. This content
is tracked by keeping an ordered list of virtual memory page
ids [PgId]. For example, the first id in a file node’s page list
points to the exact page in the virtual memory where the first n
bytes of the page are stored. BESFS maintains a map F which
associates each file node Fda with a unique file identifier
f. Similar to file nodes, BESFS has directory nodes Dda to
track directory information such as names and permissions.
Each directory is associated with a unique directory id d. The
directory map D tracks the relationship between ids and nodes.

Layout & Paths (P). BESFS tracks the paths for all files
and directories via a tree layout T. Each node in the tree can
be a file node id f or a directory node id d. Files are leaf
nodes and each directory can have its own tree layout. BESFS
does not allow cycles in the tree layout and all levels have
non-duplicate directory/file names.

Open File Handles (O). Each open file has a file handle
which is allocated when the file is first opened. The file handle
comprises the file id f and the current cursor position for that
file. BESFS tracks all the list of open files via the open file
handles list O. All operations on an open file are done via its
file handle. When the file is closed, the file handle is removed
from the list. Further, the O list cannot have any duplicate f
because each open file can have only one handle.

Good State. BESFS must satisfy all the data structure invari-
ants in Table 4 before and after any interface invocation to be

in a good state. A state is good if the following holds true:

NoDupName(t)∧NoDup(FIDS(t))∧NoDup(DIDS(t))∧
NoDup(IDS(h))∧∃d s s.t. t = DIR: d s∧
∀i j, i 6= j⇒ F(i)[2]∩F(j)[2] = /0

Known Limitations. BESFS implementation does not sup-
port a small set of filesystem operations, such as symbolic
links, which are unsafe as per our safety properties. Although
our currently BESFS does not reason about other metadata in-
formation such as time-stamps (e.g., mtime, atime, ctime).
There is no fundamental limitation in adding them to BESFS
for detecting potential attacks from a malicious OS. SGX
does not support shared memory between enclaves. Typical
enclave applications do not concurrently access protected files.
Thus, we do not consider multi-enclave or concurrent access
to shared enclave files. BESFS enforces an atomicity property
and does not reason about APIs for explicit synchronization
(e.g., sync, fsync, and fdatasync).3 Nonetheless, it is com-
patible with them and detects any violation by the OS. We
have consciously decided to not support these functionalities
in our first version of BESFS to maintain simplicity.

5 BESFS Safety Proof & Modeling Challenges

The key theorems for our BESFS implementation are that the
functions meet our interface specifications. For each method
of our interface, we must prove that the implementation sat-
isfies the state properties (SP1-SP5) from Section 3.2 and
the transition properties (TP1-TP15) outlined in Table 3. We
assume BESFS is running on a hostile OS that can take any
actions permitted by the hardware.

As one can readily see, our implementation uses recursive
data structures and its state properties require second-order
logic. For example, the BESFS filesystem layout T in Sec-
tion 4 is defined mutually recursively in terms of a forest
(a list of trees). This motivates our choice of Coq, an inter-
active proof assistant supporting calculus of inductive con-
structions. Coq allows the prover to write definitions of data
structures and interface specification in a language called Gal-
lina, which is a purely functional language. The statements
of the theorems are written in Gallina as well. The proofs of
the statement, called proof scripts are written in a language
called LTAC. LTAC’s library of tactics, or one-line commands,
encode standard proof strategies for ease of writing proofs.
Purely Functional. The programming language provided by
Coq is purely functional, having no global state variables.
However, the filesystem is inherently stateful. So, we use
state passing to bridge this gap. The state resulting from the
operation of each method is explicitly passed as a parameter
to the next call. If we explicitly pass these state in each call,

3For non-explicit synchronization, the enclave has to explicitly invoke
them to ask the OS to persist the changes.

it is prone to clutter and accidental omission; therefore, we
define them as a monad. As we can see in the definition of
fs_write, the code is purely functional but it looks like the
traditional imperative program. The benefit of this monadic
style programming is that it hides the explicit state passing,
which makes the code more elegant and less error-prone.

While proof script checking, if Coq encounters a memoized
expression for f (z), it will skip proving f (z) again. This is
a challenge because in a sequence of system calls the same
call to f with identical arguments may return different values.
Therefore, we have to force Coq to treat each call as different.
To implement this, we introduce an implicit counter as an
argument to all the calls. It increments after each call com-
pletes. For example, consider the consecutive external calls
read_dir, create_dir, and read_dir. The two read_dir
commands may read the same directory (the same argument)
but with different return values because of the create_dir
command. To reason about such cases, the real arguments
passed to the external calls contain not only the common
arguments but also an ever-increasing global counter. Thus,
in our read_dir example, the two commands with origi-
nal argument p will be represented as read_dir(p,n) and
read_dir(p,n+1) so that Coq treats them as different.

Atomicity. The purely functional nature of Coq proofs helps
to prove the atomicity of each method call. In an enclave,
its internal state is not accessible by the OS even if it gets
interrupted; so, in a way, the enclave behaves like a pure
function between two OS calls. This simplifies our proof for
atomicity. We structure the proof script to check if an error
state is reachable from the input state and the OS-returned
values; if so, the input state is retained as the output state. If
no error is possible, the output state is set to the new state. As
a concrete example, the write method progressively checks
5 conditions (1: argument id is in the handler; 2: the specified
position is correct; 3: iut writes to the copied virtual memory
successfully; 4: the external call to seek succeeds; and 5: the
external call to write succeeds.) before changing the state.

Non-deterministic Recursive Termination. Gallina guaran-
tees that any theorem about a Gallina program is consistent,
i.e., it cannot be both proved and disproved. Further, all pro-
grams in Gallina must terminate, since the type of the program
is the statement of a theorem.4 Coq uses a small set of syn-
tactic criteria to ensure the termination. Gallina’s termination
requirement poses challenges for writing a BESFS implemen-
tation, which uses recursive data structures. In most cases, the
termination proof for BESFS properties are automatic; how-
ever, for a small number of properties, we have to provide an
explicit termination proof. For instance, write_to_buffer
does not admit a syntactic check for termination, as there is a
recursive call. To prove termination, via induction, we show
that the input buffer size strictly reduces for each invocation

4A non-terminating program such as let f (x) := f (x) has an arbitrary
type, and hence any theorem is valid about it.

of write. Effectively, we establish that there are no infinite
chains of nested recursive calls.

Mutually Recursive Data Structures. Most of our data
structure proofs are by induction and Coq always provides an
induction scheme for each inductively declared structure. The
automatically generated induction scheme from Coq is not
always strong enough to prove some of our properties. Specif-
ically, a key data structure in our design is a tree, the leaves
of which are a list of trees—this represents the directory and
file layouts (Section 3.2)—in this case.

1Tree_ind: forall P: Tree -> Prop,
2 (forall f: Fid, P (Fnode f)) -> (forall (d: Did) (l: list Tree),
3 P (Dnode d l)) -> forall t: Tree, P t
4Tree_ind2: forall P : Tree -> Prop,
5 (forall f: F, P (Fnode f)) -> (forall (d: Did) (l: list Tree),
6 forall P l -> P (Dnode d l)) -> forall t: Tree, P t

We provide an inductive statement Tree_ind2 that is stronger
than Coq-provided induction scheme Tree_ind, shown in
the above listing. Tree_ind is correct but useless. We dis-
patch the proof by the principle of strong induction, which is
Tree_ind2. Our induction property uses Coq’s second-order
logic capability, as the above code listing shows that the sub-
property P is an input argument to the main property. In our
full proof, a number of specific properties instantiate P.

External Calls to the OS. We assume that calls to the OS
always terminate to allow Coq to provide a proof. If the call
terminates, the safety is guaranteed; the OS can decide not to
terminate which constitutes as denial-of-service.

Odds & Ends. Out of the 167 lemmas, we prove 75 of them
using inductions and the rest of them by logical deductions.
There are two kinds of inductions in our proofs: strong induc-
tion and weak induction, the difference is the proof obligation.
For example, in weak induction we need to prove: if P(k) is
True then P(k+1) is True. In strong induction, it is: if P(i) is
True for all i less than or equal to k then P(k+1) is True. Our
customized induction principle for Tree is a typical strong
induction. In all, we proved 75 lemmas by induction (39 and
36 lemmas by strong and weak induction respectively).

We do not implement get_next_free_page but enforce
that an implementation must satisfy the property that the new
page allocated by the function is not used for existing files and
is a valid page (less than the upper bound limit). Similarly, for
functions new_fid and new_did we enforce the new ids are
unique to avoid conflict. It is formally stated as new_fid(t) 6∈
FIDS(t) and new_did(t) 6∈DIDS(t) respectively. Note that we
only give a specification for allocating new pages and ids for
files and directories because we do not want to restrict the
page and namespace management algorithm. This way, the
implementation can use a naive strategy of just allocating a
new id/page for each request, employ a sophisticated re-use
strategy to allocated previously freed ids, or use temporal and
spatial optimizations for page allocation as long as they fulfill
our safety conditions.

Component Language LOC Size (in KB)

Machine-proved Implementation
Coq definitions & Proofs Gallina 3676 1757.38

Hand-coded Implementation
Implementation C 863 172.39
External Call Interface C 469 201.55
SGX Utils C 117 667.04

Total 1449 1040.98

Table 5: LOC for various components of BESFS.

6 Coq to Executable Code

BESFS Coq definitions and proof script comprise 4625 LOC
with 167 lemmas and 2 main theorems. The development
effort for BESFS was approximately two-human years for
designing the specifications and proving them. The Coq im-
plementation has a machine-checked proof of correctness, i.e.,
matching the specification. The Coq code, however, needs to
be converted to executable code to run in an enclave. Cur-
rently, Coq supports automatic extraction to three high-level
languages: OCaml, Haskell, and Scheme [1]. We can suc-
cessfully compile our code to executables; however, none of
these three functional languages have runtime support for
Intel SGX, primarily due to the lack of a memory manager
(e.g., garbage collector) that is compatible with SGX.

Further, we have tried to run our compiled code in these
three languages on existing library OSes with SGX, but with-
out success. Specifically, we find that two state-of-the-art
frameworks, Graphene-SGX [18] and Panoply [46], are not ro-
bust enough to run compiled Haskell or OCaml “hello world”
programs. Our investigation reveals that supporting these
functional language runtimes in entirety would require exten-
sive foundational work, such as porting memory managers,
and SGX support on existing library OSes misses several crit-
ical OS abstractions. Specifically, Graphene-SGX does not
support create_timer, set_timer, delete_timer, and
sigaction syscalls. We attempted to add support for these
syscalls, but it is a non-trivial amount of work to add support
for an entire subsystem to Graphene-SGX. In Section 9, we
discuss why certified compilation from Coq to machine code
is currently not practical, but a promising future direction.

With no publicly available enclave system supporting com-
piled programs for high-level language that Coq extracts
to, we resorted to a manual line-by-line translation of our
machine-checked Coq implementation to C code. Our C im-
plementation comprises of 863 LOC core logic and 586 LOC
helper functions, totaling 1449 LOC (Table 5). Our Coq
code intentionally leaves out the implementation of untrusted
POSIX calls. At enclave runtime, these calls have to be redi-
rected to an actual filesystem provided by the OS (whose
behavior is not trusted).

Ease of Integration. Our C implementation can be integrated
with any SGX framework [15, 18, 46] as well as stand-alone
SGX applications [28] and SGX SDK [7] (See Section 7.4).

We choose Panoply as the SGX framework to integrate and
test BESFS. For adding BESFS support, we wrap the ap-
plication’s file system calls and marshal its arguments to
make them compatible with BESFS interface described in
Section 3.2. Once Panoply collects the return values from the
external libc call, we unmarshal the return values and give
it back to BESFS. BESFS checks the return values and our
wrapper then converts back the results to a data type expected
by the application. If BESFS deems the results as safe we
return the final output of the API call to the application, else
we flag a safety violation. We add 724 LOC to Panoply.

7 Evaluation

Our evaluation goal is to demonstrate the following:

• BESFS safety definition is compatible with the seman-
tics of POSIX APIs expected by benign applications.

• Our API has the right abstraction and is expressive
enough to support a wide range of applications.

• The bugs uncovered in our implementation due to
BESFS formal verification efforts.

• BESFS can be integrated into a real system.
• Performance of BESFS for (a) I/O intensive benchmarks;

(b) CPU intensive benchmarks; (c) per-call latencies for
files; and (d) real-world application workloads in typical
enclave deployments.

Experimental Setup. All our experiments were conducted
on a machine with Intel Skylake i7-6600U CPU (2.60 GHz, 4
cores) with 12 GB memory and 128 MB EPC of which 96MB
is available to user enclaves. We execute our benchmark on
Ubuntu 18.04 LTS. We use our hand-coded C implementation
of BESFS and Panoply (unless stated otherwise) to run our
benchmarks in an enclave. Panoply internally uses Intel SGX
SDK Linux Open Source version 2.4 [7]. 5 BESFS uses ext4
as the underlying POSIX compliant filesystem.
Benchmarks Selection Criteria & Description. Our se-
lection is aimed at showcasing how well BESFS fares in
reaching its design goals. Since our evaluation goals for
BESFS are multi-faceted, we selected a wide variety of micro-
benchmarks, benchmarks, and real-world applications. First,
we use the micro-benchmark suite from FSCQ [21]. It com-
prises workloads to test each file-related system call via dif-
ferent sequences of filesystem operations on large and small
files. Second, we use IOZone [42], a well-known and a broad
filesystem benchmark for measuring bandwidth for different
file access patterns with 13 tests for 7 standard operations.
Third, for testing BESFS on non-I/O intensive applications,
we use CPU-intensive programs from SPEC CINT2006 [8].
We were able to port 7/12 programs from SPEC. We were
unable to port the rest of the benchmarks because some pro-
grams from SPEC (omnetpp, perlbench, xalancbmk) use

5We have also benchmarked BESFS on Ubuntu 14.04, SGX SDK 1.6.

LibC
Calls

SPEC CINT 2006 FSCQ Total
astar mcf bzip2 hmmer libqu h264 sjeng small large

BESFS Core Calls

open 3 0 1 0 0 7 0 2 1 14
read 27 0 4 0 0 129 0 1 3072 3233
write 0 0 0 0 0 0 0 1 66560 66561
lseek 0 0 0 0 0 75 0 0 66563 66638
remove 0 0 0 0 0 0 0 2 1 3
close 3 0 1 0 0 7 0 2 1 14
mkdir 0 0 0 0 0 0 0 100 0 100

BESFS Auxiliary Calls

fopen 1 2 0 5 0 6 1 0 0 15
fread 1 0 0 1 0 1 0 0 0 3
fwrite 0 1035 0 6 0 13 2 0 0 1056
fgets 0 90435 0 108 0 0 5 0 0 90548
fscanf 12 0 0 0 0 24 0 0 0 36
fprintf 0 5985 0 605 0 17 162 0 0 6769
fseek 0 0 0 0 0 2 0 0 0 2
ftell 0 0 0 4 0 1 0 0 0 5
rewind 0 0 0 3 0 0 0 0 0 3

Unsafe Calls

fsync 0 0 0 0 0 0 0 0 2 2
rename 0 0 0 0 0 0 6 0 0 6

Total 47 97457 6 732 0 282 176 108 136200 235008

Table 6: Frequency of filesystem calls. Rows 3− 11 and
13− 22 represent the frequency of core and auxiliary calls
supported by BESFS respectively. Rows 24− 26 show the
frequency of unsafe calls for each of our benchmarks.

non-C APIs which are not supported in Panoply. Other lim-
itations such as lack of support for longjmp in Panoply’s
SDK version prevent us from running the gobmk and gcc

programs. Fourth, we use all applications from Panoply—
a system to execute legacy applications in enclaves. These
4 real-world applications (H2O web server, TDS database
client, OpenSSL library, and Tor) have a mix of CPU, mem-
ory, and file, and network IO workloads. We successfully port
3/4 case-studies to BESFS (see Section 7.4 for details) and
use the same workloads as that in Panoply [46]. Lastly, we
select all the 10 real-world applications from Privado [28]
which perform inference over CIFAR10 and ImageNet us-
ing state-of-the-art neural network models. Thus, our final
evaluation is on a total of 31 applications: (a) 10 programs
from FSCQ for micro-benchmarking per-call latencies for
file operations, (b) IOZone and 7 programs from SPEC for
measuring the overhead of BESFS on IO-intensive and CPU-
intensive benchmarks. (c) 3 applications from Panoply and
10 applications from Privado for demonstrating the effect
of BESFS on real-world enclave usage. All our results are
aggregated over 5 runs.

7.1 Expressiveness & Compatibility
We empirically demonstrate that if the underlying filesystem
and the OS are POSIX compliant and benign then BESFS is
not overly restrictive in the safety conditions. We first analyze
all syscalls and libc calls made by our benchmarks for var-
ious workloads using strace and ltrace respectively. We
then filter out the fraction of filesystem related calls. Table 6
shows the statistics of the type of filesystem call and its fre-
quency for our benchmarks. We observe a total of 235008

Libc
API LOC BESFS Core API used for composition of LibC API

fs
ta

t

re
ad

op
en

cl
os

e

se
ek

cr
ea

te

m
kd

ir

rm
di

r

re
m

ov
e

ch
m

od

re
ad

di
r

tr
un

ca
te

w
ri

te

read 7 X
fread 25 X
fscanf 34 X
fwrite 12 X X
write 20 X X
fprintf 15 X X
fopen 78 X X X X X
open 60 X X X X X
fclose 9 X
close 17 X
fseek 31 X X
lseek 39 X X
rewind 5 X
creat 30 X X
mkdir 25 X
unlink 21 X
chmod 23 X
ftruncate 5 X
ftell 12 X
fgetc 9 X
fgets 25 X
readdir 10 X

Table 7: Expressiveness of BESFS. Row represents a libc

API used by our benchmarks. Column 2 represents the LOC
added to implement the libc API. Columns 3−15 represent
the 13 core APIs supported by BESFS. Xrepresents that the
API is used to compose libc API.

filesystem calls comprising of 18 unique APIs. BESFS can
protect 235000/235008 of them.

Compositional Power of BesFS. BESFS directly reasons
about 15 calls using the core APIs outlined in Section 3.2. We
use BESFS’s composition theorem and support additional 22
auxiliary APIs that have to be intercepted such that BESFS
checks all the file operations for safety. For example, fgets
reads a file and stops after an EOF or a newline. The read
is limited to at most one less character than size parameter
specified in the call. We implement fgets by using BESFS’s
core API for read (see Table 7). Since we do not know the loca-
tion of the newline character, we read the input file character-
by-character and stop when we see a new line, EOF, or if
the buffer size reaches the value size. Similarly, we already
know the total size of the buffer when writing the content to
the output file (e.g., after resolving the format specifiers in
fprintf). Thus we write the complete buffer in one single
call. libc calls use flags to dictate what operations the API
must perform. For example, the application can use the fopen
API to open a file for writing. If the application specifies the
append flag (“a”), the library creates the file if it does not
exist and positions the cursor at the end of the file. To achieve
the same functionality using BESFS, we first try to open the
file, if it fails with an ENOENT error, we check if the parent di-
rectory exists. If so, we first create a new file. If the file exists,
we open the file and then explicitly seek the cursor to the end
of the file. We implement and support a total of 16 flags in
total for our 3 APIs which require flags. Our implementation

currently supports the common flags used by applications and
can be extended in the future using our core APIs.

BESFS does not reason about the safety of the remaining
2 APIs which amount to a total of 8 calls in our benchmarks.
Although BESFS does not support these unsafe calls, it still
allows the enclave to perform those calls. Importantly, these
unsupported calls do not interfere with the runs in our test
suite and do not affect our test executions. By the virtue of
BESFS’s atomicity property, synchronization calls such as
sync, fsync, and fdatasync have to be implicitly invoked
for the OS after each function call to persist the changes. We
experimentally confirm that the program produces the same
output with and without BESFS, thus reaffirming that our
safety checks do not alter the program behavior.

7.2 Do Proofs Help in Eliminating Bugs?

We encountered many mistakes and eliminated them during
the development as a part of our proof experience. This high-
lights the importance of a machine-proved specification.
Example 1: seek Specification Bug. In at least two of our
functions, we need to test whether the position of the current
cursor is within the range of the file, in other words, less than
the length of the file. If the cursor is beyond the scope of a
specific file, any further operation such as read or write is
illegal. In the early versions of our Coq implementation, we
simply put “if pos< size” as a judgment. But during the
proof, we found we cannot prove certain assertions because
we had ignored the corner case by mistake: when the file is
just created with 0 bytes size, the only valid position is also 0.
Example 2: write Implementation Bug. BESFS’s write
function input includes the position (pos) at which the buffer
is to be written. In our initial Coq implementation of write,
we used the name pos for the cursor stored in the open handles
(O). Thus, we had two different variables being referred to
by the same name. As a result, the second variable value
(the cursor) shadowed the write position. This bug in write

was violating the specification for the argument pos. We
uncovered it when our proof was not going through. However,
once we fixed the bug by renaming the input argument, we
were able to prove the safety of write.
Example 3: Panoply & Intel SGX SDK Overflow Bugs.
Panoply’s fread and fwrite calls pass the size of the buffer
and a pointer to the buffer. BESFS piggybacks on these
Panoply calls to read and write encrypted pages. While in-
tegrating BESFS code in Panoply, our integrity checks af-
ter read / write calls were failing. On further inspection, we
identified stack corruption bugs in both fread and fwrite

implementations of Panoply. Specifically, if the buffer size
is larger than the maximum allowed stack size in the enclave
configuration file (> 64 KB in our experiments), even if we
pass the right buffer size, the enclave’s stack is corrupted. To
fix this issue, we changed the SDK code to splice the buffer

into smaller sizes (< 64 KB) to read / write large buffers.
After our fix, the implementation passed BESFS checks.
Example 4: Panoply Error Code Bugs. According to
fopen POSIX specification, the function fails with ENOENT

if the filename does not name an existing file or is an empty
string. When we used Panoply’s fopen interface, it did not
return the expected error code when the file did not exist.
Our BESFS check after the external call flagged a warning
of a safety condition violation because BESFS did not have
a record of this file but the external call claimed that the file
existed. On investigation, we discovered that Panoply had a
bug in its errno passing logic. In fact, on further testing of
other functions using BESFS, we found 7 distinct functions
where Panoply’s error codes were incorrect. We tested against
the 7 attacks / bugs in Panoply after integrating BESFS to
ensure that it did not violate any invariants.
Simulating a Malicious OS. First, we hand-crafted a suite
of around 687 tests cases in the form of assert statements
embedded in 40 test-driver C programs that make a series of
filesystem calls. To generate these asserts and test drivers, we
took our proof invariants and systematically generated asserts
which checked the given constraint. We then coded the tests
along with the assert statements. Second, to simulate the mali-
cious OS, we manually crafted and planted known-bad return
values at the system call interface. We semi-randomly gener-
ated these values, similar to SibylFS [44]. When simulating
the OS, it does not matter if the victim binary is executing
inside or outside of an enclave. This observation simplified
our testing setup. For a clean way to hook on the syscalls and
libc calls made by our victim test-driver programs, we used
the ld_preload environment variable to optionally link the
test case victim binaries with our malicious syscall and libc
return values.6 We then performed three sets of executions
of the victim binaries: (a) without our malicious library and
without BESFS for ensuring that the victim binary executes
in the baseline case and recording the benign path for a given
input; (b) with our malicious library but without BESFS to
show that the lack of checks causes the victim binary to ex-
ecute unintended paths i.e., assertion failures; (c) with our
malicious library and BESFS to check if BESFS can detect
the bad return values. We investigated the resulting assertion
failures in these runs. We report that all of the failures ob-
served in (b) but not (a) were due to lack of checks; while they
did not occur in case (c). This shows that BESFS invariants
were able to prune all the planted bad return values.

7.3 Performance

BESFS is the first formally verified filesystem for SGX. Al-
though our primary goal is not performance, we report per-
formance on our benchmarks for completeness. First, we re-

6Another way is to write a malicious Linux kernel module to intercept
calls made by the victim enclave binary.

open
read

write
create

createmany

createwrite
0

2

4

6

8

Ti
m

e
(s

ec
on

ds
) Panoply BesFS

(a) FSCQ Single Syscalls.

seq-read
re-read

rand-read

seq-write

rand-write
0

40

80

120

160

B
an

dw
id

th
(M

B
/s

ec
) Panoply BesFS

(b) FSCQ Large IO.

bzip2 mcf
hmmer

sjeng

libquantum
h264ref

astar
0

20

40

60

80

Ti
m

e
(s

ec
on

ds
) Panoply BesFS

(c) SPEC CINT 2006.

write
rewrite read

reread

randread

randwrite

bkwdread
0

400

800

1200

1600

B
an

dw
id

th
(M

B
/s

ec
) Panoply BesFS

(d) IOZone.

Figure 5: BESFS Performance on micro-benchmarks, standard CPU, and IO benchmarks with respect to Panoply. (a) Execution
overhead for each system call in FSCQ. (b) File operation bandwidth reported by FSCQ large IO suite. (c) Execution overhead
on SPEC2006 CPU benchmarks. (d) File operation bandwidth reported by IOZone benchmarks.

port the per-call latencies and file access pattern latencies
with the FSCQ micro-benchmark. Our main take away from
this experiment is that BESFS overhead is dominated by the
encryption-decryption of the file content. Next, we demon-
strate this phenomenon systematically by reporting 12.22%
overhead and 4.8× bandwidth slowdown on standard CPU
(SPEC CINT2006) and I/O benchmarks respectively. Lastly,
we report the overheads on real-world applications in Sec-
tion 7.4. Future optimizations can use BESFS API specifica-
tion as an oracle for golden implementation.

Micro-benchmarking Single File-related Operations. We
use FSCQ to measure the per-system call overhead of BESFS.
Figure 5a shows that it averages to 3.1×. We observe that
read-write operations incur a large overhead. The read op-
eration is slowed down by 3.7× and create+write is 5.4×
slower because BESFS performs page-level AES-GCM au-
thenticated encryption when the file content is stored on the
disk. Thus, each read and write operation leads to at least a
page of encryption-decryption and integrity computation.

Micro-benchmarking Access Patterns. Next, we run all the
large tests in FSCQ with 8 KB block size, 1 KB I/O transfer
size, and 1 MB total file size. FSCQ performs a series of se-
quential write, sequential read, re-read, random read, random
write, multi-write, and multi-read operations. We perform
each type of operation 100K times on the files. We observe
an average overhead of 6.7× because of BESFS checks. Fig-
ure 5b shows the bandwidth for each of these operations. Se-
quential access incurs relatively less performance overhead be-
cause they consolidate the page-level encryption-decryption
for every 4K bytes. Random accesses are more expensive
because each read / write may cause a page-level encryption-
decryption. BESFS does not cache page content so re-reads
and sequential reads incur similar overheads.

I/O Intensive Benchmark: IOZone. We use IOZone to test
BESFS for file sizes up to 512 KB while varying the record
size from 4 KB to 512 KB and report the aggregate perfor-
mance in Figure 5d. We observe an average of 4.8× decrease
in the IO bandwidth over all the operations. Write operations
are significantly more expensive in comparison to reads. This
is because BESFS performs reads over the page for decrypting
the content and then does a write, which requires encryption.

CPU Intensive Benchmark: SPEC CINT2006. SPEC
benchmarks take in a configuration file and optionally an
input file to produce an output file. Figure 5c and shows the
performance per-application overhead; the average overhead
is 12.22%. hmmer, href, sjeng, and libquantum have rela-
tively less overhead whereas astar, bzip2, and mcf exhibit
larger overhead. astar and mcf use fscanf to read the con-
figuration files. Thus, reading each character read leads to a
page read and corresponding decryption and integrity check.
Further, astar reads a binary size of 65 KB for processing.
As shown by our single syscall measurements (Figure 5a),
reads are expensive. Both these factors amplify the slowdown
for astar. bzip2 and mcf output the benchmark results to
new files of sizes 274 and 32 KB respectively which leads to
a slowdown. Specifically, bzip2 reads input file in chunks
of 5000 bytes which leads to a 2-page read / write and de-
crypt/encrypt per chunk. Finally, libquantum has the lowest
overhead because it does not perform any file operations.

7.4 Real-world Case Studies
We showcase the ease of integration and usage of BESFS
in real-world enclave programs with two case-studies: (a)
4 applications from Panoply; (b) 10 applications from Pri-
vado [28] which is built directly on Intel SGX SDK.
Secure Micron Execution with Panoply. We use the 4 ap-
plications from the Panoply paper and evaluate them under the
same workloads [46]. We do not observe any significant slow-
down for OpenSSL(±0.2%) and Tor nodes (±0.8%). Both
these applications use file operations to load configurations
(e.g., signing keys, certificates, node information) only once
during their lifetime, while the rest of the execution does not
interact with files. On the other hand, we observe an overhead
of 72.5% for the FreeTDS client. We attribute this overhead
to the nature of the application which performs file operations
for each of the 48 SQL queries in the benchmarks. Lastly,
we report that the H2O web server logic violates BESFS
safety properties. Specifically, H2O duplicates the file de-
scriptors across worker threads and concurrently accesses the
file content to be served to the clients. Thus, we deem H2O
as non-compatible with BESFS.
Secure Inference with Privado. As a second case study, we

integrate BESFS with Privado [28]—an SGX-compatible
machine-learning framework. It uses Torch library to infer
labels of images from standard datasets using 10 well-known
deep neural net architectures (LeNet, VGG19, Wideresnet,
Resnet110, Resnext29, AlexNet, Squeezenet, Resnet50, In-
ceptionv3, and Densenet). These applications vary from 230
LOC to 13.4 KLOC and have enclave memory footprint be-
tween 0.6 MB to 392 MB. We use Cifar-10 and ImageNet
datasets, as done in Privado, where each image is 3.1 KB and
155.6 KB respectively. For each of the application, we inte-
grate BESFS interface with 20 LOC changes to Privado. We
observe an overhead of ±1% relative to the baseline for all
the networks and their corresponding datasets. We see such
low overheads because, unlike Panoply, Privado decrypts the
file input after reading it. Thus, the baseline includes the cost
of decryption. In this case, BESFS only adds a fixed startup
cost of checks proportional to the number of file operations
on the input file and the number of images in a batch, while
keeping the decryption time constant across both the systems.
This shows that BESFS is compatible and easy to integrate
with enclaves which already use file encryption-decryption.

8 Related Work

We survey the existing SGX defenses including verification
as well as filesystem hardening work in the non-SGX setting.
SGX Attacks & Defenses. BESFS ensures the filesystem
integrity based on hardware integrity guarantees of SGX. It
assumes the confidentiality of SGX only in one lemma, i.e.,
the secrecy of a cryptographic key. This is an important design
choice in light of the side-channels [36, 39, 45, 52]. BESFS
assumes secure hardware implementation and is agnostic to
confidentiality defenses [29].
Filesystem Support in SGX. Ideally, the enclave should not
make any assumptions about the faithful execution on the
untrusted calls and should do its due diligence before using
any (implicit or explicit) results of each untrusted call. The
effects of malicious behavior of the OS on the enclave’s ex-
ecution depends on what counter-measures the enclave has
in place to detect and / or protect against an unfaithful OS.
Currently, the common ways to facilitate the use of filesys-
tem APIs inside an enclave are (a) port the entire filesystem
inside the enclave [11, 33]; (b) keep the files encrypted out-
side the enclave [15, 18, 46] and, for each return parameters,
check the data types, bounds on the IO buffers, and valid
value ranges of API specific values (e.g., error codes, flags,
and structures). As one concrete comparison, Intel SGX SDK
PFS Library [4] is dedicated solely to the filesystem layer. Al-
though it leaves the enclave vulnerable to Iago-like attacks as
we showed in Section 2.3, it is better than approaches which
bloat the TCB to support all syscalls. It is not transparent to
existing legacy applications; the enclave has to use APIs with
the non-standard interface for explicit key management (e.g.,

sgx_fopen_auto_key) as well as traditional file operations
(e.g., sgx_fopen(filename,mode,key)). More importantly,
while these systems reduce the attack surface of file syscall
return value tampering, none of them provably thwart all the
attacks in Section 2.2. Other filesystems with untrusted OS in
a non-enclave setting are not formally verified [37].
Verified Guarantees for Enclaves. Formal guarantees have
been studied for enclaved applications to some extent. They
provide provable confidentiality guarantees for pieces of code
executing inside the enclave. Most notably, Moat [49], /Confi-
dential [48], and IMPe [27] formally model various adversary
models in SGX and ensures that the enclave code does not
leak confidential information. These confidentiality efforts
are orthogonal to BESFS’s integrity goals. Another line of
verification research has focused on certifying the properties
of the SGX hardware primitive itself, which BESFS assumes
to be correctly implemented. Komodo [25] is a formally speci-
fied and verified monitor for isolated execution which ensures
the confidentiality and integrity of enclaves. TAP [50] does
formal modeling and verification to show that SGX and Sanc-
tum [24] provide secure remote execution which includes in-
tegrity, confidentiality, and secure measurement. The existing
works on verified filesystems do not reason about an untrusted
OS so they cannot be simply added on top of these enclave
systems. BESFS is above these hardware abstractions.
Filesystem Verification. Formal verification for large-scale
systems such as operating systems [30, 35], hypervisors [12],
driver sub-systems [20] and user-applications [31] has been
a long-standing area of research. None of these works con-
sider a Byzantine OS, which leads to completely different
modeling of properties. Filesystem verification for benign OS,
however, is in itself a challenging task [34]. This includes
building abstract specifications [26], systematically finding
bugs [53], POSIX non-compliance [44] in filesystem imple-
mentations, end-to-end verified implementations [13], crash
consistency [17], and crash recovery [21].

9 Discussion

While BESFS has a machine-checked Coq implementation of
our filesystem API specification, it would be desirable to have
machine-checked enclave-executable code. We believe this
is feasible, in principle, but requires significant advances in
state-of-the-art certified language techniques to become imme-
diately practical. There are at least three different promising
future work directions to enable certified executable BESFS
code: (1) directly certifying the enclave machine code [2]; (2)
using a certified compiler to convert Coq code to machine
code [14]; and (3) using a simulation proof of C or machine
code implementation with the Coq code in the spirit of K [5].
Compiling Coq to C. The most promising direction is to have
certified compilation from Coq to C code and then from C

to machine code. CertiCoq [14] is a certified compiler from

Gallina (Coq) to CompCert-C. CompCert [40] is one of the
most mature certified C compiler which ensures that the gener-
ated machine code for various processors behaves exactly as
prescribed by the semantics of the source program. With help
from the CertiCoq team, we report that we have successfully
compiled BESFS to executable C code. However, we point
out that CertiCoq is a very early stage compiler at present.
The produced code is incomplete which causes segmentation
faults. Further, it cannot be interfaced with external function
calls (e.g. system calls) due to missing foreign function inter-
faces (FFI). Nonetheless, we expect that as CertiCoq matures,
certified machine code for BESFS (and similar systems) will
become a practical possibility.
Verified Machine Code. The second possibility is to verify
the machine code directly. Given that BESFS is written at
a higher level of abstraction (Gallina), our subsequent ver-
ification has to reason about the language abstraction gap
between Gallina and machine code. Coq supports extraction
to OCaml, Haskell, Scala, and C. The most mature extraction
techniques are to OCaml and Haskell, so we tried to port their
runtimes to SGX. For reasons reported in Section 6, porting
such language runtimes to SGX certifiably merits a separate
research effort in its own right.
Bisimulation. A third possibility is a bisimulation of the C or
machine code and the Coq code. For maintaining such proofs,
when the BESFS specification expands in the future, the best
way is to specify the operational semantics of the machine
code (or C) and Coq in a common framework. We believe this
is possible but entails significant future work.

10 Conclusion

BESFS is the first formally proved enclave specification and
implementation for integrity-protecting POSIX filesystem
API. BESFS API is expressive to support real applications,
minimizes the TCB, and eliminates bugs.

Acknowledgments

We thank our shepherd Vasileios Kemerlis and the anonymous
reviewers for their feedback; Andrew Appel and Olivier Be-
langer for discussions and help with CertiCoq; Privado team
at Microsoft Research for sharing the torch code for our case-
study; Shruti Tople, Shiqi Shen, Teodora Baluta, and Zheng
Leong Chua for their help on improving earlier drafts of the
paper. This research was partially supported by a grant from
the National Research Foundation, Prime Ministers Office,
Singapore under its National Cybersecurity R&D Program
(TSUNAMi project, No. NRF2014NCR-NCR001-21) and
administered by the National Cybersecurity R&D Directorate.
This work was funded in part by Yale-NUS College grant
R-607-265-322-121. This material is in part based upon work
supported by the National Science Foundation under Grant

No. DARPA N66001-15-C-4066 and Center for Long-Term
Cybersecurity. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

Availability

BESFS specification and implementation in Coq is available
at https://shwetasshinde24.github.io/BesFS/

References

[1] Code Extraction from Coq. https://coq.inria.fr/
library/Coq.extraction.Extraction.html.

[2] Frama-C. https://frama-c.com/index.html.

[3] Google Asylo. https://asylo.dev.

[4] Intel Protected File System Library Using SGX.
https://software.intel.com/en-us/sgx-sdk-dev-
reference-intel-protected-file-system-library.

[5] K Framework. http://www.kframework.org.

[6] Open Enclave SDK. https://openenclave.io/.

[7] SGX SDK. https://github.com/intel/linux-sgx/.

[8] SPEC 2006. https://www.spec.org.

[9] Tor. https://www.torproject.org.

[10] Syscall wrappers should sanity-check return values from un-
trusted ocalls · issue #21 · keystone-enclave/keystone-runtime.
https://github.com/keystone-enclave/keystone-
runtime/issues/21, August 2019.

[11] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. OBLIVIATE:
A Data Oblivious File System for Intel SGX. NDSS’18.

[12] E. Alkassar, M. A. Hillebrand, W. Paul, and E. Petrova. Auto-
mated Verification of a Small Hypervisor. VSTTE’10.

[13] S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb,
L. O’Connor, J. Beeren, Y. Nagashima, J. Lim, T. Sewell,
J. Tuong, G. Keller, T. Murray, G. Klein, and G. Heiser. Co-
gent: Verifying High-Assurance File System Implementations.
ISCA’16.

[14] A. Anand, A. Appel, G. Morrisett, Z. Paraskevopoulou, R. Pol-
lack, O. S. Belanger, M. Sozeau, and M. Weaver. CertiCoq: A
verified compiler for Coq. CoqPL’17.

[15] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch, and
C. Fetzer. SCONE: Secure Linux Containers with Intel SGX.
OSDI’16.

[16] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications
from an Untrusted Cloud with Haven. OSDI’14.

[17] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy, E. Torlak,
and X. Wang. Specifying and checking file system crash-
consistency models. ASPLOS ’16.

https://shwetasshinde24.github.io/BesFS/
https://coq.inria.fr/library/Coq.extraction.Extraction.html
https://coq.inria.fr/library/Coq.extraction.Extraction.html
https://frama-c.com/index.html
https://asylo.dev
https://software.intel.com/en-us/sgx-sdk-dev-reference-intel-protected-file-system-library
https://software.intel.com/en-us/sgx-sdk-dev-reference-intel-protected-file-system-library
http://www.kframework.org
https://openenclave.io/
https://github.com/intel/linux-sgx/
https://www.spec.org
https://www.torproject.org
https://github.com/keystone-enclave/keystone-runtime/issues/21
https://github.com/keystone-enclave/keystone-runtime/issues/21

[18] C. che Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A
Practical Library OS for Unmodified Applications on SGX.
ATC’17.

[19] S. Checkoway and H. Shacham. Iago Attacks: Why the System
Call API is a Bad Untrusted RPC Interface. ASPLOS ’13.

[20] H. Chen, X. N. Wu, Z. Shao, J. Lockerman, and R. Gu. Toward
Compositional Verification of Interruptible OS Kernels and
Device Drivers. PLDI ’16.

[21] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek,
and N. Zeldovich. Using Crash Hoare Logic for Certifying the
FSCQ File System. SOSP ’15.

[22] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports. Over-
shadow: A Virtualization-based Approach to Retrofitting Pro-
tection in Commodity Operating Systems. ASPLOS’08.

[23] V. Costan and S. Devadas. Intel SGX Explained. ePrint
2016/086.

[24] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. USENIX
Security’16.

[25] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Ko-
modo: Using verification to disentangle secure-enclave hard-
ware from software. SOSP’17.

[26] P. Gardner, G. Ntzik, and A. Wright. Local Reasoning for the
POSIX File System. ESOP’14.

[27] A. Gollamudi and S. Chong. Automatic Enforcement of Ex-
pressive Security Policies Using Enclaves. OOPSLA’16.

[28] K. Grover, S. Tople, S. Shinde, R. Bhagwan, and R. Ramjee.
Privado: Practical and Secure DNN Inference with Enclaves.
CoRR, abs/1810.00602, 2019.

[29] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and
M. Costa. Strong and Efficient Cache Side-Channel Protection
using Hardware Transactional Memory. USENIX Security’17.

[30] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and
D. Costanzo. CertiKOS: An Extensible Architecture for Build-
ing Certified Concurrent OS Kernels. OSDI’16.

[31] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,
D. Zhang, and B. Zill. Ironclad Apps: End-to-end Security via
Automated Full-system Verification. OSDI’14.

[32] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel.
InkTag: Secure Applications on an Untrusted Operating Sys-
tem. ASPLOS ’13.

[33] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: A Dis-
tributed Sandbox for Untrusted Computation on Secret Data.
OSDI’16.

[34] G. Keller, T. Murray, S. Amani, L. O’Connor, Z. Chen,
L. Ryzhyk, G. Klein, and G. Heiser. File Systems Deserve
Verification Too! PLOS ’13.

[35] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal Veri-
fication of an OS Kernel. SOSP ’09.

[36] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. Spectre Attacks: Exploiting Speculative Execu-
tion. S&P’19.

[37] Y. Kwon, A. M. Dunn, M. Z. Lee, O. Hofmann, Y. Xu, and
E. Witchel. Sego: Pervasive Trusted Metadata for Efficiently
Verified Untrusted System Services. ASPLOS’16.

[38] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song.
Keystone: An Open Framework for Architecting TEEs. CoRR,
abs/1907.10119, 2019.

[39] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. USENIX Security’17.

[40] X. Leroy. The CompCert verified compiler. http://
compcert.inria.fr/.

[41] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. Innova-
tive Instructions and Software Model for Isolated Execution.
HASP ’13.

[42] W. Norcott and D. Capps. IOzone Filesystem Benchmark.

[43] D. R. K. Ports and T. Garfinkel. Towards Application Security
on Untrusted Operating Systems. HotSec’08.

[44] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy,
and P. Sewell. SibylFS: Formal Specification and Oracle-based
Testing for POSIX and Real-world File Systems. SOSP ’15.

[45] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing
Page Faults from Telling Your Secrets. ASIACCS’16.

[46] S. Shinde, D. L. Tien, S. Tople, and P. Saxena. Panoply: Low-
TCB Linux Applications With SGX Enclaves. NDSS’17.

[47] S. Shinde, S. Tople, D. Kathayat, and P. Saxena. PodArch:
Protecting Legacy Applications with a Purely Hardware TCB.
Technical report, National University of Singapore, February
2015.

[48] R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. Rajamani, S. A.
Seshia, and K. Vaswani. A design and verification methodology
for secure isolated regions. PLDI ’16.

[49] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani. Moat: Veri-
fying Confidentiality of Enclave Programs. CCS ’15.

[50] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A.
Seshia. A Formal Foundation for Secure Remote Execution of
Enclaves. CCS ’17.

[51] S. Tople, A. Jain, and P. Saxena. LEVEEFS: Securing Access
to Untrusted Filesystems in Enclaved Execution. Technical
report, National University of Singapore, 2015.

[52] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems.
S&P’15.

[53] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using Model
Checking to Find Serious File System Errors. OSDI’04.

http://compcert.inria.fr/
http://compcert.inria.fr/

	Introduction
	Problem
	Background & Setup
	The Baseline: Existing Systems
	Is Encryption Sufficient?

	BesFS Design
	Approach
	BesFS Interface
	How Do Our Properties Defeat Attacks?

	BesFS Implementation
	BesFS Safety Proof & Modeling Challenges
	Coq to Executable Code
	Evaluation
	Expressiveness & Compatibility
	Do Proofs Help in Eliminating Bugs?
	Performance
	Real-world Case Studies

	Related Work
	Discussion
	Conclusion

